Excessive production of airway mucus is a cardinal feature of bronchial asthma and chronic obstructive pulmonary disease (COPD) and contributes to morbidity and mortality in these diseases. IL-13, a Th2-type cytokine, is a central mediator in the pathogenesis of bronchial asthma, including mucus overproduction. Using a genome-wide search for genes induced in airway epithelial cells in response to IL-13, we identified pendrin encoded by the SLC26A4 (PDS) gene as a molecule responsible for airway mucus production. In both asthma and COPD mouse models, pendrin was up-regulated at the apical side of airway epithelial cells in association with mucus overproduction. Pendrin induced expression of MUC5AC, a major product of mucus in asthma and COPD, in airway epithelial cells. Finally, the enforced expression of pendrin in airway epithelial cells in vivo, using a Sendai virus vector, rapidly induced mucus overproduction in the lumens of the lungs together with neutrophilic infiltration in mice. These findings collectively suggest that pendrin can induce mucus production in airway epithelial cells and may be a therapeutic target candidate for bronchial asthma and COPD.
We have established an agonistic monoclonal antibody, UT12, that induces stimulatory signals comparable to those induced by lipopolysaccharide (LPS) through Toll-like receptor 4 and MD-2. UT12 activated nuclear factor B and induced the production of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-␣) and interleukin-6 (IL-6) in peritoneal exudative cells. In addition, mice injected with UT12 rapidly fell into endotoxin shock concomitant with the augmentation of serum TNF-␣ and IL-6 levels, followed by death within 12 h. On the other hand, when the mice were pretreated with a sublethal dose of UT12, the mice survived the subsequent lethal LPS challenges, with significant suppression of serum TNF-␣ and IL-6, indicating that UT12 induced tolerance against LPS. This effect of UT12 was maintained for at least 9 days. In contrast, the tolerance induced by LPS continued for less than 3 days. These results illuminate a novel potential therapeutic strategy for endotoxin shock by the use of monoclonal antibodies against the Toll-like receptor 4/MD-2 complex.Lipopolysaccharide (LPS) is a glycolipid component of the gram-negative bacterial cell wall and induces various host responses, including the production of proinflammatory cytokines. When they are appropriately produced, these cytokines, such as tumor necrosis factor alpha (TNF-␣) and interleukin-6 (IL-6), activate host immunity to fight off bacteria. The excessive proinflammatory cytokines produced in response to large amounts of LPS, however, can provoke extreme systemic inflammation and often cause lethal endotoxin shock.Animals pretreated with a sublethal dose of LPS become tolerant to subsequent challenges with a lethal dose of LPS and display reduced mortality. This phenomenon is called LPS tolerance and is defined as the reduced capacity of the host or cultured macrophage/monocyte to respond to LPS following initial stimulation (6,26). It has also been reported that bacterial or fungal removal is improved during the tolerant state, despite attenuated cytokine production (14,20). Therefore, LPS tolerance is regarded as a reasonable response that simultaneously manages both the clearance of pathogens and host protection from excess inflammation.Here we report on the induction of long-term LPS tolerance realized by an agonistic monoclonal antibody (MAb) against the Toll-like receptor 4 (TLR4)/MD-2 complex. Mice pretreated with this MAb showed significant survival advantages compared with the survival of LPS-pretreated mice. MATERIALS AND METHODSMice. C3H/HeN, C3H/HeJ, ddY, and SCID mice were from Japan SLC (Hamamatsu, Shizuoka, Japan). C57BL/6 mice were from Charles River Japan (Yokohama, Kanagawa, Japan). A TLR4-knockout mouse strain with the C57BL/6 background (12) was a kind gift from S. Akira (Osaka University, Osaka, Japan). All animals were maintained in the Center for Laboratory Animals at Saga Medical School and were treated in accordance with the regulations of the Scientists Center for Animal Welfare.Cell culture. All the cells were cult...
Prior exposure of dendritic cells (DCs) and monocytes/macrophages to LPS causes unresponsiveness to subsequent LPS stimulation, a phenomenon called endotoxin tolerance (ET). ET impairs antigen presentation of these cells to T cells by down-regulating expression of MHC class II and co-stimulatory molecules such as CD86 and CD40. Some epidemiological studies have shown that endotoxin acts as a protective factor for allergic diseases. Accordingly, LPS has beneficial effects on the onset of airway allergic inflammation in model animals by T(h)1 skewing or induction of regulatory T cells. However, results derived from asthma model animals are controversial, probably due to the difficulty of handling LPS. We previously generated a monoclonal agonistic antibody against Toll-like receptor (TLR) 4, named UT12, which mimics the biological activities of LPS, exhibiting more potent and sustained ET than does LPS. In this study, we took advantage of UT12 to generate prolonged ET to explore the possibility that ET is involved in the inhibitory effects of the TLR4 signals on asthma model mice. Induction of ET by UT12 inhibited the capacity of DCs to expand ovalbumin (OVA)-specific T(h)2 and T(h)17 cells, without inducing T(h)1 cell or regulatory T-cell populations or producing inhibitory cytokines. Accordingly, administration of UT12 before the OVA sensitization significantly suppressed airway allergic inflammation by OVA inhalation. Taken together, these results demonstrate that ET induced by activating TLR4 signals attenuates airway allergic inflammation through direct suppression of the T-cell stimulatory effect of DCs in asthma model mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.