Poly(aspartic acid)-block-polylactide diblock copolymers (PAsp-b-PLAs) having both hydrophilic and hydrophobic segments of various lengths were synthesized. These PAsp-b-PLA diblock copolymers formed polymeric micelles consisting of a hydrophobic PLA core and a hydrophilic, pH-sensitive PAsp shell in aqueous solution. The effects of the segment length of both the PLA and the PAsp portions and the pH of the solution on the shapes and sizes of the PAsp-b-PLA polymeric micelles were investigated. The results indicated a balance between the effects of electrostatic repulsion, hydrogen bonding in the PAsp shell layer, and hydrophobic interactions in the PLA core determine the sizes of the PAsp-b-PLA polymeric micelles. Moreover, the PAsp-b-PLA polymeric micelles did not possess any cytotoxic activity against L929 fibroblast cells. The obtained polymeric micelle should be useful for biodegradable biomedical materials such as drug delivery vehicle.
Summary: A poly(aspartic acid)‐block‐polylactide (PAsp‐block‐PLA) diblock copolymer was synthesized through the polymerization of β‐benzyl‐L‐aspartate‐N‐carboxyanhydride [Asp(OBzl)‐NCA] with amino‐terminating polylactide (NH2‐PLA) as a macroinitiator. The chain length of the PAsp segment could be easily controlled by changing the monomer/initiator ratio. Dynamic light scattering measurements of PAsp‐block‐PLA aqueous solutions revealed the formation of polymeric micelles. Changes in the micelles as a function of pH were investigated.The structure and formation of micelles of the poly(aspartic acid)‐block‐polylactide (PAsp‐block‐PLA) diblock copolymers synthesized here.imageThe structure and formation of micelles of the poly(aspartic acid)‐block‐polylactide (PAsp‐block‐PLA) diblock copolymers synthesized here.
The synthesis of poly(L-lactide) (polyLA) end-capped with lactose residue was studied from the standpoint of development of a new bioabsorbable material. After the hydroxyl group of t-butoxycarbonyl(Boc)-aminoethanol was converted to Boc-aminoethanol-OK by using potassium/naphthalene, L-lactide was polymerized in tetrahydrofuran using Boc-aminoethanol-OK as an initiator at room temperature to prepare polyLA-NHBoc. Subsequently, the removal of the Boc group in terminal Boc-aminoethanol residue was performed by treatment of formic acid to obtain the amino group end-capped polyLA (polyLA-NH(2)) as a reactive polyLA derivative. The coupling reactions of lactose with polyLA-NH(2) were investigated by two methods; the synthetic method through reductive amination of lactose with polyLA-NH(2) in the presence of sodium cyanoborohydride as a reducing agent did not give high degree of substitution of end-capped lactose residue per polyLA molecule, whereas the synthetic method through the ester interchange reaction of lactonolactone with polyLA-NH(2) gave Lac-polyLA perfectly end-capped with lactose residue.
A novel hyaluronic acid (HA)-based hydrogel was prepared through polyion complex (PIC) formation between cationic polylactide (PLA)-based microspheres (MS+) and hyaluronic acid (HA-) as an anionic polyelectrolyte. The MS+ and HA formed a biodegradable PIC hydrogel (HA-/MS+) when mixed in aqueous media. The swelling behavior and mechanical properties of the PIC hydrogel could be controlled by changing the charge ratio between HA- and MS+. In addition, the HA-/MS+ PIC hydrogel resulted in a lower inflammatory response compared with a collagen hydrogel in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.