Poor transdermal penetration of active pharmaceutical ingredients (APIs) impairs both bioavailability and therapeutic benefits and is a major challenge in the development of transdermal drug delivery systems. Here, we transformed a poorly water-soluble drug, etodolac, into an ionic liquid in order to improve its hydrophobicity, hydrophilicity and skin permeability. The ionic liquid was prepared by mixing etodolac with lidocaine (1:1, mol/mol). Both the free drug and the transformed ionic liquid were characterized by differential scanning colorimetry (DSC), infrared spectroscopy (IR), and saturation concentration measurements. In addition, in vitro skin-permeation testing was carried out via an ionic liquid-containing patch (Etoreat patch). The lidocaine and etodolac in ionic liquid form led to a relatively lower melting point than either lidocaine or etodolac alone, and this improved the lipophilicity/hydrophilicity of etodolac. In vitro skin-permeation testing demonstrated that the Etoreat patch significantly increased the skin permeation of etodolac (9.3-fold) compared with an etodolac alone patch, although an Etoreat patch did not increase the skin permeation of lidocaine, which was consistent with the results when using a lidocaine alone patch. Lidocaine appeared to self-sacrificially improve the skin permeation of etodolac via its transformation into an ionic liquid. The data suggest that ionic liquids composed of approved drugs may substantially expand the formulation preparation method to meet the challenges of drugs which are characterized by poor rates of transdermal absorption.
For cutaneous squamous cell carcinoma (cSCC), topical treatment is an essential option for patients who are not candidates for, or who refuse, surgery. Epidermal growth factor receptor (EGFR) plays a key role in the development of cSCC, but EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib, have shown only partial clinical benefit in this disease. Thus, there is an unmet need to develop novel strategies for improving the efficacy of TKIs in cSCC. We previously demonstrated that the tumor-suppressive microRNA (miRNA)
miR-634
functions as a negative modulator of the cytoprotective cancer cell survival processes and is a useful anticancer therapeutic agent. In the present study, we found that topical application of an ointment containing
miR-634
inhibited
in vivo
tumor growth without toxicity in a cSCC xenograft mouse model and a 7,12-dimethylbenz[
a
]anthracene (DMBA)/12-
O
-tetradecanoylphorbol-13-acetate (TPA)-induced papilloma mouse model. Functional validation revealed that
miR-634
overexpression reduced glutaminolysis by directly targeting
ASCT2
, a glutamine transporter. Furthermore, overexpression of
miR-634
synergistically enhanced TKI-induced cytotoxicity by triggering severe energetic stress
in vitro
and
in vivo
. Thus, we propose that topical treatment with
miR-634
ointment is a useful strategy for improving for EGFR TKI-based therapy for cSCC.
PD-L2 is a ligand for the immune checkpoint receptor PD-1; however, its regulatory function is unclear. We previously reported that silencing of CD86 in cutaneous dendritic cells by topical application of small interfering RNA (siRNA) inhibits the elicitation of contact hypersensitivity (CHS). Here, we investigated the effects of topical application of PD-L2 siRNA on allergic skin disease. PD-L2 was induced in dendritic cells concurrently with the elevation of major histocompatibility complex class II and CD86 expression. Topical application of PD-L2 siRNA inhibited the elicitation of CHS by suppressing early proinflammatory cytokine expression and migration of hapten-carrying dendritic cells into lymph nodes. Local injection of neutralizing antiePD-L2 mAb inhibited CHS to the same extent. PD-L2 siRNA treatment inhibited CHS in PD-1/PD-L1 double knockout mice and in the sensitized T-celletransferred skin. These results suggest that the effects of PD-L2 silencing are independent of PD-1 but dependent on local memory T cells. Most of the inhibitory effects of PD-L2 and CD86 silencing on CHS were comparable, but PD-L2 siRNA treatment did not inhibit atopic diseaseelike manifestations and T helper type 2 responses in NC/Nga mice. Our results suggest that PD-L2 in cutaneous dendritic cells acts as a costimulator rather than a regulator. Local PD-L2 silencing by topical application of siRNA represents a therapeutic approach for contact allergy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.