Elderly people insidiously manifest the symptoms of heart failure, such as dyspnea and/or physical disabilities in an age-dependent manner. Although previous studies suggested that oxidative stress plays a pathological role in the development of heart failure, no direct evidence has been documented so far. In order to investigate the pathological significance of oxidative stress in the heart, we generated heart/muscle-specific manganese superoxide dismutase-deficient mice. The mutant mice developed progressive congestive heart failure with specific molecular defects in mitochondrial respiration. In this paper, we showed for the first time that the oxidative stress caused specific morphological changes of mitochondria, excess formation of superoxide (O 2 . ), reduction of ATP, and transcriptional alterations of genes associated with heart failure in respect to cardiac contractility. Accordingly, administration of a superoxide dismutase mimetic significantly ameliorated the symptoms. These results implied that O 2 . generated in mitochondria played a pivotal role in the development and progression of heart failure. We here present a bona fide model for human cardiac failure with oxidative stress valuable for therapeutic interventions.
The aging process correlates with the accumulation of cellular and tissue damage caused by oxidative stress. Although previous studies have suggested that oxidative stress plays a pathologic role in the development of bone fragility, little direct evidence has been found. In order to investigate the pathologic significance of oxidative stress in bones, we analyzed the bone tissue of mice deficient in cytoplasmic copper/zinc superoxide dismutase (CuZn-SOD, encoded by the Sod1 gene; Sod1 À/À ). In this study, we showed for the first time that in vivo cytoplasmic superoxide caused a distinct weakness in bone stiffness and decreased BMD, aging-like changes in collagen crosslinking, and transcriptional alterations in the genes associated with osteogenesis. We also showed that the surface areas of osteoblasts and osteoclasts were decreased significantly in the lumbar vertebrae of Sod1 À/À mice, indicating the occurrence of low-turnover osteopenia. In vitro experiments demonstrated that intracellular oxidative stress induced cell death and reduced the proliferation in primary osteoblasts but not in osteoclasts, indicating that impaired osteoblast viability caused the decrease in osteoblast number and suppressed RANKL/M-CSF osteoclastogenic signaling in bone. Furthermore, treatment with an antioxidant, vitamin C, effectively improved bone fragility and osteoblastic survival. These results imply that intracellular redox imbalance caused by SOD1 deficiency plays a pivotal role in the development and progression of bone fragility both in vivo and in vitro. We herein present a valuable model for investigating the effects of oxidative stress on bone fragility in order to develop suitable therapeutic interventions. ß
Mechanical stress and aging are major risk factors of cartilage degeneration. Human studies have previously reported that oxidative damage increased, while SOD2 protein was reciprocally downregulated in osteoarthritic degenerated cartilage. However, it remains unclear whether mitochondrial superoxide imbalance in chondrocytes causes cartilage degeneration. We herein demonstrate that mechanical loading promoted mitochondrial superoxide generation and selective Sod2 downregulation in chondrocytes in vivo and that mitochondrial superoxide inducer also downregulated Sod2 expression in chondrocytes in vitro. A genetically manipulated model revealed that Sod2 deficiency in chondrocytes also resulted in mitochondrial superoxide overproduction and dysfunction, thus leading to cartilage degeneration. Intra-articular injection of a permeable antioxidant effectively suppressed the mechanical loading-induced mitochondrial superoxide generation and cartilage degeneration in mice. Our findings demonstrate that mitochondrial superoxide plays a pivotal role in the development and progression of osteoarthritis, and the mitochondrial superoxide balance may therefore be a promising target for the treatment of cartilage degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.