Duchenne muscular dystrophy (DMD) is a progressive disease characterised by chronic muscle degeneration and inflammation. Our previously established DMD model rats (DMD rats) have a more severe disease phenotype than the broadly used mouse model. We aimed to investigate the role of senescence in DMD using DMD rats and patients. Senescence was induced in satellite cells and mesenchymal progenitor cells, owing to the increased expression of CDKN2A, p16- and p19-encoding gene. Genetic ablation of p16 in DMD rats dramatically restored body weight and muscle strength. Histological analysis showed a reduction of fibrotic and adipose tissues invading skeletal muscle, with increased muscle regeneration. Senolytic drug ABT263 prevented loss of body weight and muscle strength, and increased muscle regeneration in rats even at 8 months—the late stage of DMD. Moreover, senescence markers were highly expressed in the skeletal muscle of DMD patients. In situ hybridization of CDKN2A confirmed the expression of it in satellite cells and mesenchymal progenitor cells in patients with DMD. Collectively, these data provide new insights into the integral role of senescence in DMD progression.
Sarcopenia is the age-related loss of skeletal muscle mass and function. Skeletal muscle comprises diverse progenitor cells, including mesenchymal progenitor cells (MPCs), which normally support myogenic cell function but cause a decline in skeletal muscle function after differentiating into fibrous/adipose tissue. Cellular senescence is a form of persistent cell cycle arrest caused by cellular stress, including oxidative stress, and is accompanied by the acquisition of senescence-associated secretory phenotype (SASP). Here, we found γH2AX+ senescent cells appeared in the interstitium in skeletal muscle, corresponding in position to that of MPCs. H2O2 mediated oxidative stress in 2G11 cells, a rat MPC clone previously established in our laboratory, successfully induced senescence, as shown by the upregulation of p21 and SASP factors, including IL-6. The senescent 2G11 cells lost their fibro/adipogenic potential, but, intriguingly, coculture of myoblasts with senescent 2G11 cells abrogated the myotube formation, which coincided with the downregulation of myomaker, a muscle-specific protein involved in myogenic cell fusion; however, forced expression of myomaker could not rescue this abrogation. These results suggest that senescent MPCs in aged rat skeletal muscle lose their fibro/adipogenic potential, but differ completely from undifferentiated progenitor cells in that senescent MPCs suppress myoblast fusion and thereby potentially accelerate sarcopenia.
Skeletal muscle has an ability to regenerate in response to injury due to the presence of satellite cells. Injury in skeletal muscle causes infiltration of pro-inflammatory macrophages (M1 macrophages) to remove necrotic myofibers, followed by their differentiation into anti-inflammatory macrophages (M2 macrophages) to terminate the inflammation. Since both M1 and M2 macrophages play important roles, coordinated regulation of their kinetics is important to complete muscle regeneration successfully. Progranulin (PGRN) is a pluripotent growth factor, having a protective role against the inflamed tissue. In the central nervous system, PGRN regulates inflammation by inhibiting the activation of microglia. Here we used muscle injury model of PGRN-knockout (PGRN-KO) mice to elucidate whether it has a role in the kinetics of macrophages during muscle regeneration. We found the prolonged persistence of macrophages at the late phase of regeneration in PGRN-KO mice, and these macrophages were suggested to be M2 macrophages since this was accompanied with an increased CD206 expression. We also observed muscle hypertrophy in PGRN-KO mice at the late stage of muscle regeneration. Since M2 macrophages are known to have a role in maturation of myofibers, this muscle hypertrophy may be due to the presence of increased number of M2 macrophages. Our results suggest that PGRN plays a role in the regulation of kinetics of macrophages for the systemic progress of muscle regeneration.
Dystrophin, encoded by the DMD gene on the X chromosome, stabilizes the sarcolemma by linking the actin cytoskeleton with the dystrophin-glycoprotein complex (DGC). In-frame mutations in DMD cause a milder form of X-linked muscular dystrophy, called Becker muscular dystrophy (BMD), characterized by the reduced expression of truncated dystrophin. So far, no animal model with in-frame mutations in Dmd has been established. As a result, the effect of in-frame mutations on the dystrophin expression profile and disease progression of BMD remains unclear. In this study, we established a novel rat model carrying in-frame Dmd gene mutations (IF rats) and evaluated the pathology. We found that IF rats exhibit reduced expression of truncated dystrophin in a proteasome-independent manner. This abnormal dystrophin expression caused dystrophic changes in muscle tissues, but did not lead to functional deficiency. We also found that the expression of additional dystrophin named dpX, which forms the DGC in the sarcolemma, is associated with the appearance of truncated dystrophin. In conclusion, the outcomes of this study contribute to the further understanding of BMD pathology and help elucidate the efficiency of dystrophin recovery treatments in Duchenne muscular dystrophy, a more severe form of X-linked muscular dystrophy.
This is an open access article under the terms of the Creat ive Commo ns Attri butio n NonCo mmercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.