This paper reports the structure-dependent molecular orientation behavior of sericin, an adhesive silk protein secreted by silkworm, Bombyx mori. Although application of sericin as a biomaterial is anticipated because of its unique characteristics, sericin's physicochemical properties remain unclear, mainly because of its vulnerability to heat or alkaline treatment during separation from fibroin threads. This study employed intact sericin obtained from fibroin-deficient mutant silkworm to investigate the relationship between molecular orientation and the secondary structure of sericin. Sericin films were artificially stretched after moistening with aqueous ethanol of various concentrations. The resulting molecular orientation was analyzed using polarized infrared spectroscopy. These analyses indicated that formation of aggregated strands among extended sericin chains induced by ethanol treatment is the key to generating molecular orientation. Strong intermolecular hydrogen bonds are inferred to allow aggregated strands' stretching-force transmission, thereby causing molecular orientation.
Silk fibroin incorporated with unnatural amino acids was produced by in vivo feeding of p-chloro-, p-bromo-, and p-azido-substituted analogues of L-phenylalanine (Phe) to transgenic silkworms (Bombyx mori) that expressed a mutant of phenylalanyl-tRNA synthetase with expanded substrate recognition capabilities in silk glands. Cutting down the content of Phe in the diet was effective for increasing the incorporation of Phe analogues but simultaneously caused a decrease of fibroin production. The azide groups incorporated in fibroin were active as chemical handles for click chemistry in both the solubilized and the solid (fibrous) states. The azides survived degumming in the boiling alkaline solution that is required for complete removal of the sericin layer, demonstrating that AzPhe-incorporated silk fibroin could be a versatile platform to produce "clickable" silk materials in various forms. This study indicates the huge potential of UAA mutagenesis as a novel methodology to alter the characteristics of B. mori silk.
This paper reports a preparation method for silk sericin hydrogel using the Sericin-hope silkworm, whose cocoons consist almost exclusively of sericin. Sericin solution, prepared from Sericin-hope cocoons, contains intact sericin and forms elastic hydrogels with the addition of ethanol. The sericin hydrogel can be prepared without crosslinking by chemicals or irradiation and might be usable as a naturally occurring biomaterial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.