The purpose of the present study was to improve the composition of the lipid solution used in parallel artificial membrane permeation assay for the precise prediction of oral absorption. We modified the composition of lipid solution, which was used to make a lipid membrane on the filter support. First, we changed the chain length of organic solvent (PC/alkyldienes [C7-C10]). A negative charge was then added to the membrane to mimic the intestinal membrane (PC/stearic acid/1,7-octadiene and PC/PE/PS/PI/cholesterol/1,7-octadiene). Finally, we examined the predictability of the PC/PE/PS/PI/CHO/1,7-octadiene membrane using structurally diverse compounds. Permeability coefficients of tested compounds were increased as the chain length of alkyldiene became shorter. The addition of a negative charge to the membrane increased the permeability of the basic compounds. However, the negatively charged membrane with stearic acid showed different permeability profiles from PC/PE/PS/PI/CHO. The predictability of the PC/PE/PS/PI/CHO/1,7-octadiene membrane was adequate (r = 0.858, n = 31) for use during the early stages of the drug discovery/development process.
The purpose of the present study was to improve the composition of the lipid solution used in parallel artificial membrane permeation assay for the precise prediction of oral absorption. We modified the composition of lipid solution, which was used to make a lipid membrane on the filter support. First, we changed the chain length of organic solvent (PC/alkyldienes [C7-C10]). A negative charge was then added to the membrane to mimic the intestinal membrane (PC/stearic acid/1,7-octadiene and PC/PE/PS/PI/cholesterol/1,7-octadiene). Finally, we examined the predictability of the PC/PE/PS/PI/CHO/1,7-octadiene membrane using structurally diverse compounds. Permeability coefficients of tested compounds were increased as the chain length of alkyldiene became shorter. The addition of a negative charge to the membrane increased the permeability of the basic compounds. However, the negatively charged membrane with stearic acid showed different permeability profiles from PC/PE/PS/PI/CHO. The predictability of the PC/PE/PS/PI/CHO/1,7-octadiene membrane was adequate (r = 0.858, n = 31) for use during the early stages of the drug discovery/development process.
The interactions between silver ion and DNA were studied kinetically by the stopped flow method. The experimental results show that the reaction between silver ion and GC base pair of DNA proceeds by two steps and that between silver ion and AT base pair of DNA with one step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.