The height of Japanese youth raised in the northern region tends to be greater than that of youth raised in the southern region; therefore, a geographical gradient in youth body height exists. Although this gradient has existed for about 100 years, the reasons for it remain unclear. Consideration of the nutritional improvement, economic growth, and intense migration that has occurred in this period indicates that it is probably the result of environmental rather than nutritional or genetic factors. To identify possible environmental factors, ecological analysis of prefecture-level data on the body size of 8- to 17-year-old youth averaged over a 13-year period (1996 to 2008) and Japanese mesh climatic data on the climatic variables of temperature, solar radiation, and effective day length (duration of photoperiod exceeding the threshold of light intensity) was performed. The geographical distribution of the standardized height of Japanese adolescents was found to be inversely correlated to a great extent with the distribution of effective day length at a light intensity greater than 4000 lx. The results of multiple regression analysis of effective day length, temperature, and weight (as an index of food intake) indicated that a combination of effective day length and weight was statistically significant as predictors of height in early adolescence; however, only effective day length was statistically significant as a predictor of height in late adolescence. Day length may affect height by affecting the secretion of melatonin, a hormone that inhibits sexual and skeletal maturation, which in turn induces increases in height. By affecting melatonin production, regional differences in the duration of the photoperiod may lead to regional differences in height. Exposure to light intensity greater than 4000 lx appears to be the threshold at which light intensity begins to affect the melatonin secretion of humans who spend much of their time indoors.
The influence of day length on living creatures differs with the photosensitivity of the creature; however, the possible sunshine duration (N0) might be an inadequate index of the photoperiod for creatures with low light sensitivity. To address this issue, the authors tried to estimate the effective day length, i.e., the duration of the photoperiod that exceeds a certain threshold of light intensity. Continual global solar radiation observation data were gathered from the baseline surface radiation network (BSRN) of 18 sites from 2004 to 2007 and were converted to illuminance data using a luminous efficiency model. The monthly average of daily photoperiods exceeding each defined intensity (1 lx, 300 lx, … 20,000 lx) were calculated [defined as Ne(lux)]. The relationships between the monthly average of global solar radiation (Rs), N0, and Ne(lux) were investigated. At low light intensity (<500 lx), Ne(lux) were almost the same as N0. At high light intensity (>10,000 lx), Ne(lux) and Rs showed a logarithmic relationship. Using these relationships, empirical models were derived to estimate the effective day length at different light intensities. According to the validation of the model, the effective day length for any light intensity could be estimated with an accuracy of less than 11% of the mean absolute percentage error (MAPE) in the estimation of the monthly base photoperiod. Recently, a number of studies have provided support for a link between day length and some diseases. Our results will be useful in further assessing the relationships between day length and these diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.