Arginine-rich cell-penetrating peptides (AR-CPPs) are very promising tools for the delivery of therapeutic macromolecules such as peptides, proteins, and nucleic acids. These peptides allow efficient internalization of the linked cargos intracellularly through the endocytic pathway. However, when linked to bulky cargos, entrapment in the endocytic vesicles is a major limitation to the application of these peptides in cytosolic delivery. Attachment of a compatible endosomal escape device is, therefore, necessary to allow cytosolic delivery of the peptide-attached cargo. This review presents different endosomal escape devices currently in application in combination with AR-CPPs. Applications of fusogenic lipids, membrane-disruptive peptides, membrane-disruptive polymers, lysosomotropic agents, and photochemical internalization to enhance the cytosolic delivery of AR-CPPs-attached cargos are presented. The properties of each system and its mechanism of action for the enhancement of endosomal escape are discussed, together with its applications for the delivery of different macromolecules in vitro and, if applicable, in vivo.
Host innate recognition triggers key immune responses for viral elimination. The sensing mechanism of hepatitis B virus (HBV), a DNA virus, and the subsequent downstream signaling events remain to be fully clarified. Here we found that type III but not type I interferons are predominantly induced in human primary hepatocytes in response to HBV infection, through retinoic acid-inducible gene-I (RIG-I)-mediated sensing of the 5'-ε region of HBV pregenomic RNA. In addition, RIG-I could also counteract the interaction of HBV polymerase (P protein) with the 5'-ε region in an RNA-binding dependent manner, which consistently suppressed viral replication. Liposome-mediated delivery and vector-based expression of this ε region-derived RNA in liver abolished the HBV replication in human hepatocyte-chimeric mice. These findings identify an innate-recognition mechanism by which RIG-I dually functions as an HBV sensor activating innate signaling and to counteract viral polymerase in human hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.