Experience-dependent plasticity in the brain requires balanced excitation-inhibition. How individual circuit elements contribute to plasticity outcome in complex neocortical networks remains unknown. Here we report an intracellular analysis of ocular dominance plasticity-the loss of acuity and cortical responsiveness for an eye deprived of vision in early life. Unlike the typical progressive loss of pyramidal-cell bias, direct recording from fast-spiking cells in vivo reveals a counterintuitive initial shift towards the occluded eye followed by a late preference for the open eye, consistent with a spike-timing-dependent plasticity rule for these inhibitory neurons. Intracellular pharmacology confirms a dynamic switch of GABA (gamma-aminobutyric acid) impact to pyramidal cells following deprivation in juvenile mice only. Together these results suggest that the bidirectional recruitment of an initially binocular GABA circuit may contribute to experience-dependent plasticity in the developing visual cortex.
To simplify theoretical analyses of neural networks, individual neurons are often modeled as Poisson processes. An implicit assumption is that even if the spiking activity of each neuron is non-Poissonian, the composite activity obtained by summing many spike trains limits to a Poisson process. Here, we show analytically and through simulations that this assumption is invalid. Moreover, we show with Fokker-Planck equations that the behavior of feedforward networks is reproduced accurately only if the tendency of neurons to fire periodically is incorporated by using colored noise whose autocorrelation has a negative component.
Synapses in various neural preparations exhibit spike-timing-dependent plasticity (STDP) with a variety of learning window functions. The window functions determine the magnitude and the polarity of synaptic change according to the time difference of pre- and postsynaptic spikes. Numerical experiments revealed that STDP learning with a single-exponential window function resulted in a bimodal distribution of synaptic conductances as a consequence of competition between synapses. A slightly modified window function, however, resulted in a unimodal distribution rather than a bimodal distribution. Since various window functions have been observed in neural preparations, we develop a rigorous mathematical method to calculate the conductance distribution for any given window function. Our method is based on the Fokker-Planck equation to determine the conductance distribution and on the Ornstein-Uhlenbeck process to characterize the membrane potential fluctuations. Demonstrating that our method reproduces the known quantitative results of STDP learning, we apply the method to the type of STDP learning found recently in the CA1 region of the rat hippocampus. We find that this learning can result in nearly optimized competition between synapses. Meanwhile, we find that the type of STDP learning found in the cerebellum-like structure of electric fish can result in all-or-none synapses: either all the synaptic conductances are maximized, or none of them becomes significantly large. Our method also determines the window function that optimizes synaptic competition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.