Non-pharmacological treatment (NPT) improves cognitive functions and behavioural disturbances in patients with dementia, but the underlying neural mechanisms are unclear. In this observational study, 21 patients with dementia received NPTs for several months. Patients were scanned using magnetoencephalography twice during the NPT period to evaluate NPT effects on resting-state brain activity. Additionally, cognitive functions and behavioural disturbances were measured using the Mini-Mental State Examination (MMSE-J) and a short version of the Dementia Behaviour Disturbance Scale (DBD-13) at the beginning and the end of the NPT period. In contrast to the average DBD-13 score, the average MMSE-J score improved after the NPT period. Magnetoencephalography data revealed a reduced alpha activity in the right temporal lobe and fusiform gyrus, as well as an increased lowgamma activity in the right angular gyrus. DBD-13 score changes were correlated with beta activity in the sensorimotor area. These findings corroborate previous studies confirming NPT effects on brain activity in healthy participants and people at risk of dementia. Our results provide additional evidence that brains of patients with dementia have the capacity for plasticity, which may be responsible for the observed NPT effects. In dementia, NPT might lead to improvements in the quality of life.Dementia is a chronic and progressive syndrome caused by brain diseases 1 . It is characterised by deterioration in cognitive functions, behaviour, and psychological symptoms. To date, there are only a few pharmacological treatment options available to influence the course of dementia 2-4 . At the time a patient is diagnosed with dementia, the brain damage is considered too severe to be reversible to a healthy state 5 . Thus, early diagnosis and interventions are essential to treat people at risk of dementia, such as those with "cognitive impairment, no dementia" (CIND) or "mild cognitive impairment" (MCI) [6][7][8][9] . Recent studies showed that MCI can be reversed to normal cognitive functions by non-pharmacological treatments (NPTs) [10][11][12][13][14][15] . Neuroimaging studies revealed that NPTs enhance brain plasticity even in older adults 16,17 supporting the importance of early diagnosis and interventions in dementia.The positive effects of NPTs are not limited to people at risk such as those with CIND or MCI. Clinicians and therapists frequently observe that NPTs improve cognitive functions and/or behaviours in patients with dementia 18-23 . However, the neural mechanisms underlying the positive influences of NPTs remain unclear.Geriatric health service facilities are transitional facilities between hospital and home or nursing home where registered physical, occupational, and speech therapists provide NPT and nursing care to reduce the patients' hospital stay. Patients with dementia are often transferred there when their physical conditions are usually not too severe to be treated in hospitals but their cognitive symptoms prevent them from staying at t...
Objective. Although magnetoencephalography and electroencephalography (M/EEG) signals at sensor level are robust and reliable, they suffer from different degrees of distortion due to changes in brain tissue conductivities, known as field spread and volume conduction effects. To estimate original neural generators from M/EEG activity acquired at sensor level, diverse source localisation algorithms have been proposed; however, they are not exempt from limitations and usually involve time-consuming procedures. Connectivity and network-based M/EEG analyses have been found to be affected by field spread and volume conduction effects; nevertheless, the influence of the aforementioned effects on widely used local activation parameters has not been assessed yet. The goal of this study is to evaluate the consistency of various local activation parameters when they are computed at sensor- and source-level. Approach. Six spectral (relative power, median frequency, and individual alpha frequency) and non-linear parameters (Lempel-Ziv complexity, sample entropy, and central tendency measure) are computed from M/EEG signals at sensor- and source-level using four source inversion methods: weighted minimum norm estimate (wMNE), standardised low-resolution brain electromagnetic tomography (sLORETA), linear constrained minimum variance (LCMV), and dynamical statistical parametric mapping (dSPM). Main results. Our results show that the spectral and non-linear parameters yield similar results at sensor- and source-level, showing high correlation values between them for all the source inversion methods evaluated and both modalities of signal, EEG and MEG. Furthermore, the correlation values remain high when performing coarse-grained spatial analyses. Significance. To the best of our knowledge, this is the first study analysing how field spread and volume conduction effects impact on local activation parameters computed from resting-state neural activity. Our findings evidence that local activation parameters are robust against field spread and volume conduction effects and provide equivalent information at sensor- and source-level even when performing regional analyses.
Dementia is a syndrome characterised by cognitive impairments, with a loss of learning/memory abilities at the earlier stages and executive dysfunction at the later stages. However, recent studies have suggested that impairments in both learning/memory abilities and executive functioning might co-exist. Cognitive impairments have been primarily evaluated using neuropsychological assessments, such as the Mini-Mental State Examination (MMSE). Recently, neuroimaging techniques such as magnetoencephalography (MEG), which assess changes in resting-state brain activity, have also been used as biomarkers for cognitive impairment. However, it is unclear whether these changes reflect dysfunction in executive function as well as learning and memory. In this study, parameters from the MEG for brain activity, MMSE for learning/memory, and Frontal Assessment Battery (FAB) for executive function were compared within 207 individuals. Three MEG parameters were used as representatives of resting-state brain activity: median frequency, individual alpha frequency, and Shannon’s spectral entropy. Regression analysis showed that median frequency was predicted by both the MMSE and FAB scores, while individual alpha frequency and Shannon’s spectral entropy were predicted by MMSE and FAB scores, respectively. Our results indicate that MEG spectral parameters reflect both learning/memory and executive functions, supporting the utility of MEG as a biomarker of cognitive impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.