Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) mRNA is a variant isoform of the liver-type OATP1B3. Because Ct-OATP1B3 mRNA shows an excellent cancer-specific expression profile in colorectal cancer (CRC), and that its expression levels are associated with CRC prognosis, it holds the potential to become a useful CRC detection and diagnosis biomarker. While the potential is currently justified only at the tissue level, if existence of Ct-OATP1B3 mRNA in CRC-derived extracellular vesicles (EVs) is validated, the findings could enhance its translational potential as a CRC detection and diagnosis biomarker. Therefore, this study aims at proving that Ct-OATP1B3 mRNA exists in CRC-derived EVs, and can be detected using serum specimens. To examine the possibility of Ct-OATP1B3 mRNA being existed in extracellular milieu, we isolated EVs from the human CRC (HCT116, HT-29, and SW480) cell lines, and prepared their cDNAs. The RT-PCR results showed that Ct-OATP1B3 mRNA was clearly present in EVs derived from the human CRC cell lines. Then, in order to further explore the possibility that Ct-OATP1B3 mRNA in CRCderived EVs can be detected in serum, we isolated serum EVs derived from human CRC xenograft mice, and then performed RT-PCR. The results showed that Ct-OATP1B3 mRNA could be found in all serum EV and CRC tissue samples of the mice examined. Collectively, our findings, which show that Ct-OATP1B3 mRNA exists in EVs and can be detected in (at least) mouse serum, strengthen the potential use of Ct-OATP1B3 mRNA as a serum-based CRC biomarker.Key words organic anion transporting polypeptide 1B3; SLCO1B3; colorectal cancer; extracellular vesicle; cancer biomarker Worldwide, colorectal cancer (CRC) is one of the most frequently encountered malignant tumors and is a major cause of related deaths.
Human endothelial cells derived from the umbilical vein were transformed with SV40 virions. A cell line subcultured for over 60 serial passages was characterized in comparison with its untransformed counterpart which was culturable for less than five passages.The SV40-transformed human endothelial cells, designated SV-HUVEC, were positive not only for tumor (T) antigen specific to the SV40-transformed cell, but also for two markers of endothelial cells, Factor VIII-related antigen and a receptor for Ulex europaeus agglutinin I. By transformation the growth potential of the human endothelial cells was increased and their serum requirement was decreased. The SV40-transformed endothelial cells were, however, unable to form colonies in soft agar or to form tumors in athymic nude mice, although a small nodule was produced at the site of inoculation. Subcultivation of these cells up to the 62nd passage eventually resulted in crisis and loss of further cell division. Thus, the human endothelial cells were transformed by SV40 while retaining certain normal functions but without showing tumorigenicity.Endothelial cells cover all the vascular walls in a one-wall-thick layer and form a continuous lining between the circulating blood and the surrounding tissues. Endothelial cells also play an important role in wound healing (19), the reendothelialization of vessel-wall injury (23), and tumor growth (1, 3). Establishment of a continuous cell line of endothelial cells would facilitate studies on the physiologic and pathologic factors that induce endothelial mitosis. In addition, transformation of the endothelial cells may offer a clue to a better understanding of tumors of endothelial origin, such as Kaposi's sarcoma (4, 11).Transformation of human endothelial cells with SV40 was first accomplished by Gimbrone and Fareed, in 1976, by transfection with intact circular DNA or linear fragments containing the entire early-gene region, but not by infection with SV40 virions. However, the transformed endothelial cells were negative for Factor VIIIrelated antigen (FVIII-RAG) (6).Recently, transformation of endothelial cells by infection with SV40 virions was achieved and a cell line positive for FVIII-RAG was subcultured up to the 62nd passage in our laboratory. The characteristics of the SV40-transformed endothelial cells, designated SV-HUVEC, are described in this paper.
Liver sinusoidal endothelial cells (LSECs), which are specialized endothelial cells that line liver sinusoids, have been reported to participate in a variety of liver functions, such as blood macromolecule clearance and factor VIII production. In addition, LSECs play crucial roles in liver regeneration following acute liver injury, as well as the development and progression of liver diseases or drug-induced hepatotoxicity. However, the molecular mechanisms underlying their roles remain mostly unknown. Therefore, in order to contribute to the clarification of those mechanisms, herein we report on the development of a new immortalized human LSEC (HLSEC) line. To produce this cell line, two immortalized genes were introduced into the primary HLSECs, which eventually resulted in the establishment of the HLSEC/conditionally immortalized, clone-J (HLSEC/ciJ). Consistent with the two-immortalized gene expression, HLSEC/ciJ showed excellent proliferation activity. Additionally, the results of gene expression analyses showed that several LSEC (as well as pan-endothelial) marker mRNAs and proteins were clearly expressed in HLSEC/ciJ. Furthermore, we found that adherence junction proteins were localized at the cell border in the HLSEC/ciJ monolayer, and that the cells exhibited a tube-like structure formation property. Taken together, the results obtained thus far indicate that we have successfully immortalized HLSECs, resulting in creation of HLSEC/ciJ, a cell line that possesses infinite proliferation ability while retaining possession of at least some HLSEC features. We believe that the HLSEC/ciJ have the potential to provide a valuable and unlimited alternative source of HLSECs for use in liver/LSEC physiology/pathophysiology, pharmacology, and toxicology studies.Key words liver sinusoidal endothelial cell; immortalized cell; in vitro liver model; liver Liver sinusoidal endothelial cells (LSECs) are specialized endothelial cells lining a liver sinusoid, which is a type of blood vessels characterized by a lack of distinctive basement membrane and the presence of small open pores, called fenestrae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.