Flow regime is one of the major determinants of establishment success for non‐native aquatic organisms. Here, we examine the influence of flow variability associated with snowmelt flood on the establishment success of non‐native brown trout in 10 streams in northern Japan. We regarded the presence of Age‐0 brown trout as the index of the successful establishment. The emergence of Age‐0 brown trout in our study region begins in May, a time that overlaps with the occurrence of snowmelt flood. The presence of Age‐0 brown trout was negatively associated with flow variability, and it was also negatively associated with summer water temperature. Our results indicate that the non‐native brown trout tends to establish in the streams with smaller snowmelt floods and lower summer water temperatures. Brown trout is an invasive, non‐native species that is problematic all over the world, and effective management strategies for preventing their further expansion are urgently needed. This study suggests that river managers should recognise that stable streams such as spring‐fed streams (i.e., low flow and summer water temperature) and flow‐regulated streams, have a higher potential risk of brown trout invasion.
Recent studies have demonstrated that the energetic profitability (net energy intake potential; NEI potential) of a habitat, which is calculated as the gross energy gain from foraging minus the energy expenditure from swimming at a focal point, may be a useful tool for predicting the salmonid biomass. The effectiveness of the NEI potential should be tested in various systems. Even if the NEI potential is validated, its predictive accuracy and transferability could be limited if the cover habitat, which is known to be an important factor for determining salmonid abundance, is not considered. We tested whether the NEI potential is effective for predicting the salmonid biomass even in a stream with abundant cover and whether combining the NEI potential and cover effects can improve the predictability of fish biomass using a generalized linear model. Our results demonstrated that the NEI potential could generally predict the fish biomass (percent deviance explained = 79.9 %), and the model that incorporated both the NEI potential and the cover ratio improved the predictive accuracy (percent deviance explained = 88.5 %). These results suggest that energetic profitability can be an effective indicator for assessing habitat quality and is relatively transferable to other systems. Furthermore, when cover effects are considered, the habitat quality is more accurately represented; thus, combining the energetic profitability and the cover effects might improve the transferability of the assessment across habitats
Despite a steep increase in dam removal projects, there are few studies on the biophysical responses to dam removal. In this study, we evaluated the short-term (1.5 years) and long-term (5.5 years) effects of partial check dam removal on fish assemblages and their habitats. First, the habitat preferences of fish were examined at a channel unit scale: pools, rapids, and side channels satisfied the seasonal habitat requirements of the fish assemblages. Partial check dam removal increased the abundance of these habitats and diversified the habitat structures owing to the sediment release from the dam; in contrast, the bedrock distinctly decreased 1.5 years after dam removal. However, 5.5 years after dam removal, the bedrock proportion increased, and the habitat structures were simplified again owing to the re-transportation of sediments. Similar temporal changes were also determined through a reach-scale analysis with a change in the bed materials. Anadromous Oncorhynchus masou began to spawn and recolonize in the upstream section of the dam after the dam removal, causing similar assemblage compositions between the downstream and upstream sections. The abundance of Salvelinus malma and Noemacheilus barbatulus toni in the upstream reaches decreased over time after the dam removal. The temporal changes in the biophysical responses suggest that long-term monitoring is indispensable for the reliable evaluation of dam removal effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.