9) were synthesized by oxidation of titanocene dithiolene complex 4 with sulfuryl chloride, and the crystal structures of 6 and 8 were characterized by X-ray crystallographic analysis which revealed planar and twist geometries, respectively. Tetrathiocin 1, 11, and 12, and 16membered cyclic compound 3 were also obtained by oxidation of the corresponding dithiolate or dithiolene complex. Dithiete 6 underwent tetramerization selectively to give 16-membered cyclic product 9 even at room temperature. Ring conversion reactions also proceeded among the 4-, 8-, and 16-membered unsaturated cyclic compounds possessing disulfide bonds under various conditions, such as in polar solvent or in the presence of silica gel. The ring-size selectivity of these ring conversion reactions was studied using ab initio molecular orbital calculations.
A novel neutral tetrameric silver(I) cluster [Ag(mtsc)](4) was obtained from reactions of a tridentate (4)N-morpholyl 2-acetylpyridine thiosemicarbazone ligand (N'-[1-(2-pyridyl)ethylidene] morpholine-4-carbothiohydrazide, Hmtsc) and silver(I) sources containing Ag-O bonds (Ag(2)O, Ag(OAc), silver(I) 2-pyrrolidone-5-carboxylate (infinity){[Ag(Hpyrrld)](2)}, silver(I) 5-oxo-2-tetrahydrofurancarboxylate (infinity){[Ag(othf)](2)}, and silver(I) complexes with camphanic acid (infinity){[Ag(ca)]} and (infinity){[Ag(ca)(Hca)]}). The cluster was characterized by elemental analysis, TG/DTA, FTIR and single-crystal X-ray analysis in the solid state. The solution properties of the complexes were investigated using solution molecular weight measurement, ESI-MS and solution ((1)H, (13)C and (31)P) NMR spectroscopy. The obtained cluster is a novel example of a light-stable Ag(I) cluster with a tridentate thiosemicarbazone ligand and the second report of a crystal structure of a thiosemicarbazone silver(I) complex. The reaction of the tetramer with a large excess of PPh(3) gave dimeric complexes, namely, [Ag(micro(S)-mtsc)(PPh(3))](2) and [(PPh(3))(2)Ag(micro(S)-mtsc)(2)Ag]. The chloroform solution of the tetrameric complex showed modest and effective activities against selected bacteria (Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa) and yeasts (Candida albicans and Saccharomyces cerevisiae), respectively, but it did not inhibit the growth of any selected microorganisms in a water-suspension system.
The preparation and structural characterization of a novel, solid Brønsted acid based on Dawson alpha2-monotitanium(IV)-substituted polyoxometalates (POMs) are described. The free-acid form of the POM, i.e., 13H+-heteropolyacid with the formula H13[1b].55H2O DH-1 (1b = [(alpha2-P2W17TiO61)(alpha2-P2W17TiO61H)(mu-O)]13-), was prepared by passing an aqueous solution containing a potassium salt precursor, K14[1a].17H2O DK-1 (1a=[(alpha2-P2W17TiO61)2(mu-O)]14-), through a cation-exchange resin column. Compound DK-1 was obtained by a stoichiometric reaction of mono-lacunary Dawson POM [alpha2-P2W17O61]10- with Ti(SO4)2 in an aqueous solution. [Note: the abbreviations D, M, K and H stand for dimer, monomer, potassium salt and free-acid form, respectively.] Compounds DK-1 and DH-1 were characterized by using complete elemental analysis, thermogravimetric (TG) and differential thermal analysis (DTA), FTIR, solution (31P and 183W) NMR spectroscopy, pH-varied 31P NMR spectroscopy, solid-state 31P CPMAS NMR, X-ray crystallography and acidity measurements in an organic solvent with a Hammett indicator for DH-1. The monomeric form, K8[alpha2-P2W17TiO62]. 18H2O MK-1, was derived from DK-1. The molecular structure of 1b was composed of a dimer connected through one Ti-O-Ti bond between two alpha2-mono-Ti(IV)-substituted Dawson POM subunits. BVS (bond valence sum) calculation showed that one oxygen atom (O(60A)) in one of the two Dawson subunits was protonated, therefore the two subunits were unequivalent. On the other hand, the molecular structure of la was a Ti-O-Ti bonding dimer of two equivalent Dawson subunits. The pH-varied 31P NMR spectra of DK-1 and DH-1 in aqueous solutions showed that the monomer at pH 7.0, the dimer at pH 1.0-3.0, and the mono-protonated species of the dimer at pH 0.5 were the predominant species in the solutions. The Hammett acidity constant (H0) of DH-1 in CH3CN (-2.87) was estimated to be almost the same as that of homo-Dawson heteropolyacid H6[P2W18O62].17H2O(-2.77).
The preparation and structural characterization of a novel Ti-O-Ti bonding complex constructed in a dilacunary alpha-Keggin polyoxometalate (POM), [[{Ti(ox)(H2O)}4(mu-O)3](alpha-PW10O37)](7-) (H2ox = oxalic acid) (1a), are described. The water-soluble, crystalline complex with a formula of K6H[1a].0.5KCl.10H2O (1p) was prepared as the bulk sample in 28.0% (0.51 g scale) yield in a 1:4 molar-ratio reaction of the dititanium(IV)-substituted, dimeric form of an alpha-Keggin POM, K10[(alpha-1,2-PW10Ti2O39)2].18H2O, with the titanium(IV) source K2[TiO(ox)2].2H2O in HCl-acidic solution (pH 0.08). Prior to formation of 1p, the KCl-free crystalline compound (1c) obtained was characterized with X-ray crystallography. The compound 1p was unequivocally characterized with complete elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, and solution (31P, 183W, and 13C) NMR spectroscopy. The molecular structure of 1a was determined. The POM 1a in the solid state was composed of the four octahedral Ti groups (four guests), i.e., the two Ti-O-Ti groups linked with the mu-O atom, incorporated to the two adjacent, octahedral vacant sites (two hosts) in the dilacunary Keggin POM. The formation of 1a, as well as the recently found POM [{Ti(ox)(H2O)}2(mu-O)](alpha-PW11O39)](5-) (2a), was strongly dependent on the reaction with [TiO(ox)2](2-), i.e., the anionic titanium(IV) complex as the titanium(IV) source. The POM 1a is contrasted to most titanium(IV)-substituted POMs consisting of a combination of a monolacunary site (one host) and an octahedral Ti group (one guest) and also contrasted to 2a as a combination of a monolacunary site (one host) and two octahedral Ti groups or a Ti-O-Ti group (two guests).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.