The T30 value could be a specific index for vagally mediated heart rate recovery. Vagally mediated heart rate recovery after exercise is accelerated in well trained athletes but blunted in patients with chronic heart failure.
By means of a large-scale, case-control association study using 92,788 gene-based single-nucleotide polymorphism (SNP) markers, we identified a candidate locus on chromosome 6p21 associated with susceptibility to myocardial infarction. Subsequent linkage-disequilibrium (LD) mapping and analyses of haplotype structure showed significant associations between myocardial infarction and a single 50 kb halpotype comprised of five SNPs in LTA (encoding lymphotoxin-alpha), NFKBIL1 (encoding nuclear factor of kappa light polypeptide gene enhancer in B cells, inhibitor-like 1) and BAT1 (encoding HLA-B associated transcript 1). Homozygosity with respect to each of the two SNPs in LTA was significantly associated with increased risk for myocardial infarction (odds ratio = 1.78, chi(2) = 21.6, P = 0.00000033; 1,133 affected individuals versus 1,006 controls). In vitro functional analyses indicated that one SNP in the coding region of LTA, which changed an amino-acid residue from threonine to asparagine (Thr26Asn), effected a twofold increase in induction of several cell-adhesion molecules, including VCAM1, in vascular smooth-muscle cells of human coronary artery. Moreover, the SNP, in intron 1 of LTA, enhanced the transcriptional level of LTA. These results indicate that variants in the LTA are risk factors for myocardial infraction and implicate LTA in the pathogenesis of the disorder.
The complexity of organogenesis hinders in vitro generation of organs derived from a patient's pluripotent stem cells (PSCs), an ultimate goal of regenerative medicine. Mouse wild-type PSCs injected into Pdx1(-/-) (pancreatogenesis-disabled) mouse blastocysts developmentally compensated vacancy of the pancreatic "developmental niche," generating almost entirely PSC-derived pancreas. To examine the potential for xenogenic approaches in blastocyst complementation, we injected mouse or rat PSCs into rat or mouse blastocysts, respectively, generating interspecific chimeras and thus confirming that PSCs can contribute to xenogenic development between mouse and rat. The development of these mouse/rat chimeras was primarily influenced by host blastocyst and/or foster mother, evident by body size and species-specific organogenesis. We further injected rat wild-type PSCs into Pdx1(-/-) mouse blastocysts, generating normally functioning rat pancreas in Pdx1(-/-) mice. These data constitute proof of principle for interspecific blastocyst complementation and for generation in vivo of organs derived from donor PSCs using a xenogenic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.