We study the evolution of supernova core from the beginning of gravitational collapse of a 15M ⊙ star up to 1 second after core bounce. We present results of spherically symmetric simulations of core-collapse supernovae by solving general relativistic ν-radiation-hydrodynamics in the implicit time-differencing. We aim to explore the evolution of shock wave in a long term and investigate the formation of protoneutron star together with supernova neutrino signatures. These studies are done to examine the influence of equation of state (EOS) on the postbounce evolution of shock wave in the late phase and the resulting thermal evolution of protoneutron star. We make a comparison of two sets of EOS, that is, by Lattimer and Swesty (LS-EOS) and by Shen et al.(SH-EOS). We found that, for both EOSs, the core does not explode and the shock wave stalls similarly in the first 100 milliseconds after bounce. The revival of shock wave does not occur even after a long period in either cases. However, the recession of shock wave appears different beyond 200 milliseconds after bounce, having different thermal evolution of central core. A more compact protoneutron star is found for LS-EOS than SH-EOS with a difference in the central density by a factor of ∼2 and a difference of ∼10 MeV in the peak temperature. Resulting spectra of supernova neutrinos are different to the extent that may be detectable by terrestrial neutrino detectors.
We study the black hole formation and the neutrino signal from the gravitational collapse of a non-rotating massive star of 40 M ⊙ . Adopting two different sets of realistic equation of state (EOS) of dense matter, we perform the numerical simulations of general relativistic ν-radiation hydrodynamics under the spherical symmetry. We make comparisons of the core bounce, the shock propagation, the evolution of nascent proto-neutron star and the resulting re-collapse to black hole to reveal the influence of EOS. We also explore the influence of EOS on the neutrino emission during the evolution toward the black hole formation. We find that the speed of contraction of the nascent proto-neutron star, whose mass increases fast due to the intense accretion, is different depending on the EOS and the resulting profiles of density and temperature differ significantly. The black hole formation occurs at 0.6-1.3 sec after bounce when the proto-neutron star exceeds its maximum mass, which is crucially determined by the EOS. We find that the average energies of neutrinos increase after bounce because of rapid temperature increase, but at different speeds depending on the -2 -EOS. The duration of neutrino emission up to the black hole formation is found different according to the different timing of re-collapse. These characteristics of neutrino signatures are distinguishable from those for ordinary proto-neutron stars in successful core-collapse supernovae. We discuss that a future detection of neutrinos from black-hole-forming collapse will contribute to reveal the black hole formation and to constrain the EOS at high density and temperature.Subject headings: supernovae: general -stars: neutron -black hole physicsneutrinos -hydrodynamics -equation of state Astronomically, the fate of massive stars beyond the mass limit (∼20M ⊙ ) for ordinary supernovae is currently attracting interest (Heger et al. 2003). Recent analyses of the ob-
A new table of the nuclear equation of state (EOS) based on realistic nuclear potentials is constructed for core-collapse supernova numerical simulations. Adopting the EOS of uniform nuclear matter constructed by two of the present authors with the cluster variational method starting from the Argonne v18 and Urbana IX nuclear potentials, the Thomas-Fermi calculation is performed to obtain the minimized free energy of a Wigner-Seitz cell in non-uniform nuclear matter. As a preparation for the Thomas-Fermi calculation, the EOS of uniform nuclear matter is modified so as to remove the effects of deuteron cluster formation in uniform matter at low densities. Mixing of alpha particles is also taken into account following the procedure used by Shen et al. ( , 2011. The critical densities with respect to the phase transition from non-uniform to uniform phase with the present EOS are slightly higher than those with the Shen EOS at small proton fractions. The critical temperature with respect to the liquid-gas phase transition decreases with the proton fraction in a more gradual manner than in the Shen * Corresponding author Email address: hajime.togashi@riken.jp (H. Togashi)Preprint submitted to Nuclear Physics A March 23, 2017EOS. Furthermore, the mass and proton numbers of nuclides appearing in non-uniform nuclear matter with small proton fractions are larger than those of the Shen EOS. These results are consequences of the fact that the density derivative coefficient of the symmetry energy of our EOS is smaller than that of the Shen EOS.
We present a new series of supernova neutrino light curves and spectra calculated by numerical simulations for a variety of progenitor stellar masses (13-50 M ) and metallicities (Z = 0.02 and 0.004), which would be useful for a broad range of supernova neutrino studies, e.g., simulations of future neutrino burst detection by underground detectors or theoretical predictions for the relic supernova neutrino background. To follow the evolution from the onset of collapse to 20 s after the core bounce, we combine the results of neutrino-radiation hydrodynamic simulations for the early phase and quasi-static evolutionary calculations of neutrino diffusion for the late phase, with different values of shock revival time as a parameter that should depend on the still unknown explosion mechanism. We describe the calculation methods and basic results, including the dependence on progenitor models and the shock revival time. The neutrino data are publicly available electronically.
We calculate a new equation of state for baryons at sub-nuclear densities meant for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with the thermodynamic quantities. The formulation is the NSE description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by relativistic mean field theory for nucleons and the mass formula for nuclei with the atomic number up to ∼ 1000. We have also taken into account the pasta phase, thanks to which the transition to uniform nuclear matter in our EOS occurs in the conventional manner: nuclei are not dissociated to nucleons but survive right up to the transition to uniform nuclear matter. We find that the free energy and other thermodynamical quantities are not very different from those given in the H. Shen's EOS, one of the standard EOS's that adopt the single nucleus approximation. The average mass is systematically different, on the other hand, which may have an important ramification to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far. The EOS table is currently under construction, which will include the weak interaction rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.