In this work, we demonstrate the use of organophotoredox catalysts under visible light to perform photoinduced electron transfer-reversible addition fragmentation chain transfer (PET-RAFT) for the polymerization of methacrylate monomers.
In this paper, we describe the synthesis of asymmetric functional POEGMA-b-P(ST-co-VBA) copolymers in methanol, yielding in onepot polymerization a range of nanoparticle morphologies, including spherical micelles, worm-like, rod-like micelles and vesicles. The presence of the aldehyde group was then exploited to form crosslinks or to conjugate chemotherapy compounds, such as doxorubicin, via pH-breakable bonds (Schiff base or imine) directly to the preformed nanoparticles. The influence of the nanoparticle morphologies on the MCF-7 breast cancer cell line uptake was investigated using flow cytometry and confocal microscopy. Finally, the IC 50 of DOX, following nanoparticle delivery, was studied showing significant influence of the nanoparticle carrier morphology on therapeutic efficacy for breast cancer.
Nanoparticle size, surface charge and material composition are known to affect the uptake of nanoparticles by cells. However, whether nanoparticle shape affects transport across various barriers inside the cell remains unclear. Here we used pair correlation microscopy to show that polymeric nanoparticles with different shapes but identical surface chemistries moved across the various cellular barriers at different rates, ultimately defining the site of drug release. We measured how micelles, vesicles, rods and worms entered the cell and whether they escaped from the endosomal system and had access to the nucleus via the nuclear pore complex. Rods and worms, but not micelles and vesicles, entered the nucleus by passive diffusion. Improving nuclear access, for example with a nuclear localization signal, resulted in more doxorubicin release inside the nucleus and correlated with greater cytotoxicity. Our results therefore demonstrate that drug delivery across the major cellular barrier, the nuclear envelope, is important for doxorubicin efficiency and can be achieved with appropriately shaped nanoparticles.
Poly(oligoethylene glycol) methyl ether acrylate was polymerized via reversible addition fragmentation transfer polymerization (RAFT), and then chain extended in the presence of both a cross-linker and vinyl benzaldehyde (VBA), yielding monodisperse star polymers. The presence of aldehyde groups in the core was exploited to attach doxorubicin. The drug loading was controlled by the amount of VBA incorporated (until 28 wt% in drug). The doxorubicin release was studied at pH = 5.5 and 7.4; conditions representative of endosomal and extra cellular environments. In vitro studies revealed that the doxorubicin-conjugated star polymers had a level of cytotoxicity comparable to that found for free doxorubicin. Confocal microscopy and flow cytometry studies confirmed efficient cell uptake of the star polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.