ABSTRACT:Background ozone, known as the ozone that occurs in the troposphere as a result of biogenic emissions without photochemical influences, has a close relationship with human health risk. The prediction of the background ozone level by an air quality model could cover a wider region, whereas a measurement method can only record at monitoring sites. The problem is that simulation with deterministic models is quite tedious because of the nonlinear nature of some particular chemical reactions involved in the pollutant formulation. In this work, we present a reliable method for determination of the background ozone using the ambient measurement data. Our proposed definition can be used to determine the background level at any part of the globe and in any seasons without relying on data obtained at remote sites.A statistical model approach will be used for the estimation of the background ozone concentration, and a method for extrapolating the site data will be utilised to approximate the spatial distribution on the region. The proposed method will be applied in the Sydney basin to evaluate its effectiveness in background ozone determination. The results show the advantage of the proposed approach as a globally generic and computationally efficient way for the background ozone estimation with a reasonable accuracy.
The emission of black carbon (BC) particles, which cause atmospheric warming by affecting radiation budget in the atmosphere, is the result of an incomplete combustion process of organic materials. The recent wildfire event during the summer 2019-2020 in South-Eastern Australia was unprecedented in scale. The wildfires lasted for nearly 3 months over large areas of the two most populated states of New South Wales and Victoria. This study on the emission and dispersion of BC emitted from the biomass burnings of the wildfires using the Weather Research Forecast – Chemistry (WRF-Chem) model is aimed to determine the extent of the BC spatial dispersion and ground concentration distribution and the effect of BC on air quality and radiative transfer at the top of the atmosphere, the atmosphere and on the ground. The predicted aerosol concentration and AOD are compared with the observed data from the New South Wales Department of Planning and Environment (DPE) aethalometer and air quality network and from remote sensing data. The BC concentration as predicted from WRF-Chem model is in general less than the observed data as measured from the aethalometer monitoring network, but the spatial pattern corresponds well, and the correlation is relatively high. The total BC emission into the atmosphere during the event and the effect on radiation budget were also estimated. This study shows that the summer 2019-2020 wildfires affect not only the air quality and health impact on the east coast of Australia but also short-term weather in the region via aerosol interactions with radiation and cloud.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.