The ability to manipulate therapeutic agents in fluids is of interest to improve the efficiency of targeted drug delivery. Ultrasonic manipulation has great potential in the field of therapeutic applications as it can trap and manipulate micro-scale objects. Recently, several methods of ultrasonic manipulation have been studied through standing wave, traveling wave, and acoustic streaming. Among them, the traveling wave based ultrasonic manipulation is showing more advantage for in vivo environments. In this paper, we present a novel ultrasonic transducer (UT) array with a hemispherical arrangement that generates active traveling waves with phase modulation to manipulate a micromotor in water. The feasibility of the method could be demonstrated by in vitro and ex vivo experiments conducted using a UT array with 16 transducers operating at 1 MHz. The phase of each transducer was controlled independently for generating a twin trap and manipulation of a micromotor in 3D space. This study shows that the ultrasonic manipulation device using active traveling waves is a versatile tool that can be used for precise manipulation of a micromotor inserted in a human body and targeted for drug delivery.
Targeted drug delivery using microrobots manipulated by an external actuator has significant potential to be a practical approach for wireless delivery of therapeutic agents to the targeted tumor. This work aimed to develop a novel acoustic manipulation system and macrophage-based microrobots (Macbots) for a study in targeted tumor therapy. The Macbots containing superparamagnetic iron oxide nanoparticles (SPIONs) can serve as drug carriers. Under an acoustic field, a microrobot cluster of the Macbots is manipulated by following a predefined trajectory and can reach the target with a different contact angle. As a fundamental validation, we investigated an in vitro experiment for targeted tumor therapy. The microrobot cluster could be manipulated to any point in the 4 × 4 × 4 mm region of interest with a position error of less than 300 μm. Furthermore, the microrobot could rotate in the O-XY plane with an angle step of 45 degrees without limitation of total angle. Finally, we verified that the Macbots could penetrate a 3D tumor spheroid that mimics an in vivo solid tumor. The outcome of this study suggests that the Macbots manipulated by acoustic actuators have potential applications for targeted tumor therapy.
Acoustic tweezers provide unique capabilities in medical applications, such as contactless manipulation of small objects (e.g., cells, compounds or living things), from nanometer-sized extracellular vesicles to centimeter-scale structures. Additionally, they are capable of being transmitted through the skin to trap and manipulate drug carriers in various media. However, these capabilities are hindered by the limitation of controllable degrees of freedom (DoFs) or are limited maneuverability. In this study, we explore the potential application of acoustical tweezers by presenting a five-DoF contactless manipulation acoustic system (AcoMan). The system has 30 ultrasound transducers (UTs) with single-side arrangement that generates active traveling waves to control the position and orientation of a fully untethered nanocarrier clusters (NCs) in a spherical workspace in water capable of three DoFs translation and two DoFs rotation. In this method, we use a phase modulation algorithm to independently control the phase signal for 30 UTs and manipulate the NCs’ positions. Phase modulation and switching power supply for each UT are employed to rotate the NCs in the horizontal plane and control the amplitude of power supply to each UT to rotate the NCs in the vertical plane. The feasibility of the method is demonstrated by in vitro and ex vivo experiments using porcine ribs. A significant portion of this study could advance the therapeutic application such a system as targeted drug delivery.
The ultrasonic actuator can be used in medical applications because it is label-free, biocompatible, and has a demonstrated history of safe operation. Therefore, there is an increasing interest in using an ultrasonic actuator in the non-contact manipulation of micromachines in various materials and sizes for therapeutic applications. This research aims to design, fabricate, and characterize a single-sided transducer array with 56 channels operating at 500 kHz, which provide benefits in the penetration of tissue. The fabricated transducer is calibrated using a phase reference calibration method to reduce position misalignment and phase discrepancies caused by acoustic interaction. The acoustic fields generated by the transducer array are measured in a 300 mm × 300 mm × 300 mm container filled with de-ionized water. A hydrophone is used to measure the far field in each transducer array element, and the 3D holographic pattern is analyzed based on the scanned acoustic pressure fields. Next, the phase reference calibration is applied to each transducer in the ultrasonic actuator. As a result, the homogeneity of the acoustic pressure fields surrounding the foci area is improved, and the maximum pressure is also increased in the twin trap. Finally, we demonstrate the capability to trap and manipulate micromachines with acoustic power by generating a twin trap using both optical camera and ultrasound imaging systems in a water medium. This work not only provides a comprehensive study on acoustic actuators but also inspires the next generation to use acoustics in medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.