Person Re-Identification (Re-ID) is a very important task in video surveillance systems such as tracking people, finding people in public places, or analysing customer behavior in supermarkets. Although there have been many works to solve this problem, there are still remaining challenges such as large-scale datasets, imbalanced data, viewpoint, finegrained data (attributes), the Local Features are not employed at semantic level in online stage of Re-ID task, furthermore, the imbalanced data problem of attributes are not taken into consideration. This paper has proposed a Unified Re-ID system consisted of three main modules such as Pedestrian Attribute Ontology (PAO), Local Multi-task DCNN (Local MDCNN), Imbalance Data Solver (IDS). The new main point of our Re-ID system is the power of mutual support of PAO, Local MDCNN and IDS to exploit the inner-group correlations of attributes and pre-filter the mismatch candidates from Gallery set based on semantic information as Fashion Attributes and Facial Attributes, to solve the imbalanced data of attributes without adjusting network architecture and data augmentation. We experimented on the well-known Market1501 dataset. The experimental results have shown the effectiveness of our Re-ID system and it could achieve the higher performance on Market1501 dataset in comparison to some state-of-the-art Re-ID methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.