Probabilistic flood forecasting requires flood models that are simple and fast. Many of the modelling applications in the literature tend to be complex and slow, making them unsuitable for probabilistic applications which require thousands of individual simulations. This article focusses on the development of such a modelling approach to support probabilistic assessment of flood hazards, while accounting for forcing and system uncertainty. Here, we demonstrate the feasibility of using the open-source SWMM (Storm Water Management Model), focussing on Can Tho city, Mekong Delta, Vietnam. SWMM is a dynamic rainfall-runoff simulation model which is generally used for single event or long-term (continuous) simulation of runoff quantity and quality and its application for probabilistic riverflow modelling is atypical. In this study, a detailed SWMM model of the entire Mekong Delta was built based on an existing ISIS model containing 575 nodes and 592 links of the same study area. The detailed SWMM model was then systematically reduced by strategically removing nodes and links to eventually arrive at a level of detail that provides sufficiently accurate predictions of water levels for Can Tho for the purpose of simulating urban flooding, which is the target diagnostic of this study. After a comprehensive assessment (based on trials with the varying levels of complexity), a much reduced SWMM model comprising 37 nodes and 40 links was determined to be able to provide a sufficiently accurate result while being fast enough to support probabilistic future flood forecasting and, further, to support flood risk reduction management.
Abstract. Flood risk management and planning decisions in many parts of the world have historically utilised flood hazard or risk maps for a very limited number of hazard scenarios (e.g. river water levels), mainly due to computational challenges. With the potentially massive increase in flood risk in future due to the combination of climate change effects (increasing the hazard) and increasing population and developments in floodplains (increasing the consequence), risk-informed flood risk management, which enables balancing the risk with the reward, is now becoming more and more sought after. This requires a comprehensive and quantitative risk assessment, which in turn demands multiple (thousands of) river and flood model simulations. Performing such a large number of model simulations is a challenge, especially for large, complex river systems (e.g. Mekong) due to the associated computational and resource demands. This article presents an efficient modelling approach that combines a simplified 1D hydrodynamic model for the entire Mekong Delta with a detailed 1D/2D coupled model and demonstrates its application at Can Tho city in the Mekong Delta. Probabilistic flood hazard maps, ranging from 0.5 yr to 100 yr return period events, are obtained for the urban centre of Can Tho city under different future scenarios taking into account the impact of climate change forcing (river flow, sea-level rise, storm surge) and land subsidence. Results obtained under present conditions show that more than 12 % of the study area is inundated by the present-day 100 yr return period water level. Future projections show that, if the present rate of land subsistence continues, by 2050 (under both RCP4.5 and RCP8.5 climate scenarios), the 0.5 yr and 100 yr return period flood extents will increase by around 15-fold and 8-fold, respectively, relative to the present-day flood extent. However, without land subsidence, the projected increases in the 0.5 yr and 100 yr return period flood extents by 2050 (under RCP4.5 and RCP8.5) are limited to between a doubling to tripling of the present-day flood extent. Therefore, adaptation measures that can reduce the rate of land subsidence (e.g. limiting groundwater extraction), would substantially mitigate future flood hazards in the study area. A combination of restricted groundwater extraction and the construction of a new and more efficient urban drainage network would facilitate even further reductions in the flood hazard. The projected 15-fold increase in flood extent projected by 2050 for the twice per year (0.5 yr return period) flood event implies that the do nothing management approach is not a feasible option for Can Tho.
Risk-informed flood risk management requires a comprehensive and quantitative risk assessment, which often demands multiple (thousands of) river and flood model simulations. Performing such a large number of model simulations is a challenge, especially for large, complex river systems (e.g., Mekong) due to the associated computational and resource demands. This article presents an efficient probabilistic modeling approach that combines a simplified 1D hydrodynamic model for the entire Mekong Delta with a detailed 1D/2D coupled model and demonstrates its application at Can Tho city in the Mekong Delta. Probabilistic flood-hazard maps, ranging from 0.5 to 100 year return period events, are obtained for the urban center of Can Tho city under different future scenarios taking into account the impact of climate change forcing (river flow, sea-level rise, storm surge) and land subsidence. Results obtained under present conditions show that more than 12% of the study area is inundated by the present-day 100 year return period of water level. Future projections show that, if the present rate of land subsidence continues, by 2050 (under both RCP 4.5 and RCP 8.5 climate scenarios), the 0.5 and 100 year return period flood extents will increase by around 15- and 8-fold, respectively, relative to the present-day flood extent. However, without land subsidence, the projected increases in the 0.5 and 100 year return period flood extents by 2050 (under RCP 4.5 and RCP 8.5) are limited to between a doubling to tripling of the present-day flood extent. Therefore, adaptation measures that can reduce the rate of land subsidence (e.g., limiting groundwater extraction), would substantially mitigate future flood hazards in the study area. A combination of restricted groundwater extraction and the construction of a new and more efficient urban drainage network would facilitate even further reductions in the flood hazard. The projected 15-fold increase in flood extent projected by 2050 for the twice per year (0.5 year return period) flood event implies that the “do nothing” management approach is not a feasible option for Can Tho.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.