Converging signals from the mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K) pathways are well established to modulate translation initiation. Less is known regarding the molecular basis of protein synthesis regulated by other inputs, such as agonists of the Ras/extracellular signal-regulated kinase (ERK) signaling cascade. Ribosomal protein (rp) S6 is a component of the 40S ribosomal subunit that becomes phosphorylated at several serine residues upon mitogen stimulation, but the exact molecular mechanisms regulating its phosphorylation and the function of phosphorylated rpS6 is poorly understood. Here, we provide evidence that activation of the p90 ribosomal S6 kinases (RSKs) by serum, growth factors, tumor promoting phorbol esters, and oncogenic Ras is required for rpS6 phosphorylation downstream of the Ras/ERK signaling cascade. We demonstrate that while ribosomal S6 kinase 1 (S6K1) phosphorylates rpS6 at all sites, RSK exclusively phosphorylates rpS6 at Ser 235/236 in vitro and in vivo using an mTORindependent mechanism. Mutation of rpS6 at Ser 235/236 reveals that phosphorylation of these sites promotes its recruitment to the 7-methylguanosine cap complex, suggesting that Ras/ERK signaling regulates assembly of the translation preinitiation complex. These data demonstrate that RSK provides an mTORindependent pathway linking the Ras/ERK signaling cascade to the translational machinery.In eukaryotic cells, the main rate-limiting step of translation is initiation, which is controlled by an array of proteins that respond to signaling cascades activated by extracellular signals (reviewed in Refs. 1-3). The mammalian target of rapamycin, mTOR, 4 is a conserved serine/threonine kinase that integrates signals from nutrients, energy sufficiency, and growth factors to regulate mammalian cell growth (reviewed in Refs. 4, 5-8).Under conditions of nutrient and energy sufficiency and insulin or mitogen stimulation, mTOR stimulates two important translational regulators, the ribosomal S6 kinases (S6K1 and S6K2) and the eukaryotic initiation factor 4E (eIF4E). eIF4E is crucial for ribosome recruitment as it binds to the 7-methylguanosine cap structure (m7GpppN, where N is any nucleotide) at the 5Ј-end of nearly all transcribed mRNAs to initiate cap-dependent translation (reviewed in Ref. 7). When mTOR is active, eIF4E nucleates the assembly of the translation preinitiation complex through recruitment of numerous initiation factors, resulting in association of the ribosomal subunits to the mRNA. S6K1 and S6K2 are serine/threonine kinases directly stimulated by mTOR which in turn, phosphorylate substrates involved in cell and body size (5, 6). S6K1 phosphorylates several substrates located in the cytoplasm and the nucleus, including the ribosomal protein (rp) S6 (reviewed in Ref. 9).Ribosomal protein S6 is one of 33 proteins that comprise the 40 S ribosomal subunit and represents the most extensively studied substrate of S6K1 (10). Because the initial discovery that liver-derived rpS6 was phosphoryla...
Summary The mTORC1 signaling pathway integrates environmental conditions into distinct signals for cell growth by balancing anabolic and catabolic processes. Accordingly, energetic stress inhibits mTORC1 signaling predominantly through AMPK-dependent activation of TSC1/2. Thus, TSC1/2-/- cells are hypersensitive to glucose deprivation and this has been linked to increased p53 translation and activation of apoptosis. Herein, we show that mTORC1 inhibition during glucose deprivation prevented not only the execution of death, but also induction of energetic stress. mTORC1 inhibition during glucose deprivation decreased AMPK activation and allowed ATP to remain high, which was both necessary and sufficient for protection. This effect was not due to increased catabolic activities such as autophagy, but rather exclusively due to decreased anabolic processes, reducing energy consumption. Specifically, TSC1/2-/- cells become highly dependent on glutamate dehydrogenase-dependent glutamine metabolism via the TCA cycle for survival. Therefore, mTORC1 inhibition during energetic stress is primarily to balance metabolic demand with supply.
SUMMARYA direct-infusion electrospray ionization triple-quadrupole mass spectrometry method with multiple reaction monitoring (MRM) was employed to measure 264 lipid analytes extracted from leaves of Arabidopsis thaliana subjected to mechanical wounding. The method provided precise measurements with an average coefficient of variation of 6.1%. Lipid classes analyzed comprised galactolipids and phospholipids (including monoacyl molecular species, molecular species with oxidized acyl chains, phosphatidic acids (PAs)), tri-and tetra-galactosyldiacylglycerols (TrGDGs and TeGDGs), head-group-acylated galactolipids, and headgroup-acylated phosphatidylglycerol (acPG), sulfoquinovosyldiacylglycerols (SQDGs), sphingolipids, di-and tri-acylglycerols (DAGs and TAGs), and sterol derivatives. Of the 264 lipid analytes, 254 changed significantly in response to wounding. In general, levels of structural lipids decreased, whereas monoacyl molecular species, galactolipids and phosphatidylglycerols (PGs) with oxidized fatty acyl chains, PAs, TrGDGs, TeGDGs, TAGs, head-group-acylated galactolipids, acPG, and some sterol derivatives increased, many transiently. The observed changes are consistent with activation of lipid oxidizing, hydrolyzing, glycosylating, and acylating activities in the wounding response. Correlation analysis of the levels of lipid analytes across individual control and treated plants was used to construct a lipid dendrogram and to define clusters and sub-clusters of lipid analytes, each composed of a group of lipids which occurred in a coordinated manner. Current knowledge of metabolism supports the notion that observed sub-clusters comprise lipids generated by a common enzyme and/or metabolically downstream of a common enzyme. This work demonstrates that co-occurrence analysis, based on correlation of lipid levels among plants, is a powerful approach to defining lipids generated in vivo by a common enzymatic pathway.
Direct infusion electrospray ionization triple quadrupole precursor scanning for three oxidized fatty acyl anions revealed 86 mass spectral peaks representing polar membrane lipids in extracts from Arabidopsis (Arabidopsis thaliana) infected with Pseudomonas syringae pv tomato DC3000 expressing AvrRpt2 (PstAvr). Quadrupole time-of-flight and Fourier transform ion cyclotron resonance mass spectrometry provided evidence for the presence of membrane lipids containing one or more oxidized acyl chains. The membrane lipids included molecular species of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, digalactosyldiacylglycerol, monogalactosyldiacylglycerol, and acylated monogalactosyldiacylglycerol. . Mass spectral signals from the polar oxidized lipid (ox-lipid) species were quantified in extracts of Arabidopsis leaves subjected to wounding, infection by PstAvr, infection by a virulent strain of P. syringae, and low temperature. Ox-lipids produced low amounts of mass spectral signal, 0.1% to 3.2% as much as obtained in typical direct infusion profiling of normal-chain membrane lipids of the same classes. Analysis of the oxidized membrane lipid species and normal-chain phosphatidic acids indicated that stress-induced ox-lipid composition differs from the basal ox-lipid composition. Additionally, different stresses result in the production of varied amounts, different timing, and different compositional patterns of stress-induced membrane lipids. These data form the basis for a working hypothesis that the stressspecific signatures of ox-lipids, like those of oxylipins, are indicative of their functions.Biotic and abiotic stresses result in lipid oxidation, and there is strong evidence for the importance of oxidized free fatty acids, also known as oxylipins, in plant stress responses (Imbusch and Mueller, 2000;Vollenweider et al.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.