Abstract:Rural electrification is one of the most significant issues faced by electricity companies. For this reason, these companies are choosing alternative sources to generate energy in isolated regions. Furthermore, hybrid generation systems are an effective option for supplying protected areas. In this context, this research aims at designing an autonomous hybrid system to meet the annual electricity demand of the inhabitants of a national park. Fluvial and solar energies are the best options to reduce environmental impact and to ensure the conservation of the endemic fauna and flora of the island at a low carbon footprint. The system comprises a series of subsystems modeled using commercial software for sizing and optimization. The main generation subsystem contains a hydrokinetic turbine and photovoltaic panels, the storage subsystem contains a battery bank, and the backup subsystem consists of a diesel generator used in case of lack of energy from the rest of suppliers of the hybrid system. The main results of the simulation show an optimized system that fulfills the energy demand while minimizing the use of the diesel generator to 5668 kWh/year (14.3%) of thorough generation. The hydrokinetic generator supplies 20,330 kWh/year (51.4% of the total generation) and the solar generator supplies 13,580 kWh/year (34.3%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.