Background-Drugs with I Kr -blocking action cause secondary long-QT syndrome. Several cases have been associated with mutations of genes coding cardiac ion channels, but their frequency among patients affected by drug-induced long-QT syndrome (dLQTS) and the resultant molecular effects remain unknown. Methods and Results-Genetic testing was carried out for long-QT syndrome-related genes in 20 subjects with dLQTS and 176 subjects with congenital long-QT syndrome (cLQTS); electrophysiological characteristics of dLQTS-associated mutations were analyzed using a heterologous expression system with Chinese hamster ovary cells together with a computer simulation model. The positive mutation rate in dLQTS was similar to cLQTS (dLQTS versus cLQTS, 8 of 20 [40%] versus 91 of 176 [52%] subjects, Pϭ0.32). The incidence of mutations was higher in patients with torsades de pointes induced by nonantiarrhythmic drugs than by antiarrhythmic drugs (antiarrhythmic versus others, 3 of 14 [21%] versus 5 of 6 [83%] subjects, PϽ0.05). When reconstituted in Chinese hamster ovary cells, KCNQ1 and KCNH2 mutant channels showed complex gating defects without dominant negative effects or a relatively mild decreased current density. Drug sensitivity for mutant channels was similar to that of the wild-type channel. With the Luo-Rudy simulation model of action potentials, action potential durations of most mutant channels were between those of wild-type and cLQTS. Conclusions-dLQTS had a similar positive mutation rate compared with cLQTS, whereas the functional changes of these mutations identified in dLQTS were mild. When I Kr -blocking agents produce excessive QT prolongation (dLQTS), the underlying genetic background of the dLQTS subject should also be taken into consideration, as would be the case with cLQTS; dLQTS can be regarded as a latent form of long-QT syndrome. (Circ Arrhythmia Electrophysiol. 2009;2:511-523.)Key Words: long-QT syndrome Ⅲ secondary Ⅲ drug Ⅲ electrophysiology Ⅲ ion channel C ongenital long-QT syndrome (cLQTS) is characterized by abnormally prolonged ventricular repolarization and familial inheritance, leading to polymorphic ventricular tachycardia (torsades de pointes [TdP]), causing sudden cardiac death. 1,2 In contrast, secondary long-QT syndrome can be induced by a variety of commercially available drugs, including antiarrhythmic drugs, antihistamines, antibiotics, Clinical Perspective on p 523and major tranquilizers. 3 In patients with drug-induced long-QT syndrome (dLQTS), after a washout period of the culprit drugs, the QT interval usually returns to within normal range. Genetic factors may underlie the susceptibility to drug-induced serious adverse reactions such as a long QT Received February 29, 2008; accepted July 6, 2009. (eg, drugs, hypokalemia, or bradycardia). Among the subjects, 20 probands had drug-induced cardiac events (10.2% of long-QT syndrome probands). Their clinical information was collected, including family history of sudden death age 30 years or younger and long-QT syndrome members, previ...
We measured mitochondrial NADH autofluorescence or Ca(2+) using Rhod-2, simultaneously with cell shortening in isolated guinea-pig ventricular myocytes. When both frequency and amplitude of twitch shortening (work intensity) were increased by raising stimulus frequency in incremental steps from 0.1 to 3.3 Hz, the steady level of NADH signal increased in a frequency-dependent manner. Mitochondrial Ca(2+) also increased with increasing work intensity. Applying Ru360, an inhibitor of mitochondrial Ca(2+) uniporter, largely attenuated the response of both NADH fluorescence and mitochondrial Ca(2+). The increase in mitochondrial Ca(2+) was slow with t(1/2)=~12 s and no obvious cyclic changes were observed in the NADH signal. When a step change from 0.1 to 3.3 Hz stimulation was applied, the NADH signal first decreased to 83% and then increased to 155% of the control level. Upon returning to 0.1 Hz, the NADH signal showed an overshoot before declining to the control level. The biphasic onset time course was well explained by the delayed Ca(2+) activation of the substrate dehydrogenation superimposed on the feedback control of the ATP synthesis, while the offset time course with a delayed deactivation of dehydrogenation. A computer simulation using an oxidative phosphorylation linked to the cardiac excitation contraction model well reconstructed the response of NADH. This model simulation predicts that the activation of substrate dehydrogenation provides ~23% of driving force of the ATP synthesis to meet the increased workload induced by the jump of stimulus from 0.1 to 3.3 Hz, and remaining ~77% is supplied by the feedback control.
To obtain insights into the mechanisms underlying the membrane excitation and contraction of cardiac myocytes, we developed a computer model of excitation-contraction coupling (Kyoto model: Jpn. J. Physiol. 53 (2003) 105). This model was further expanded by incorporating pivotal reactions of ATP metabolism; the model of mitochondrial oxidative phosphorylation by Korzeniewski and Zoladz (Biophys. Chem. 92 (2001) 17). The ATP-dependence of contraction, and creatine kinase and adenylate kinase were also incorporated. After minor modifications, the steady-state condition was well established for all the variables, including the membrane potential, contraction, and the ion and metabolite concentrations in sarcoplasmic reticulum, mitochondria and cytoplasm. Concentrations of major metabolites were close to the experimental data. Responses of the new model to anoxia were similar to experimental results of the P-31 NMR study in whole heart. This model serves as a prototype for developing a more comprehensive model of excitation-contraction-metabolism coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.