Helminth-induced type 2 cytokines increase the number of regulatory T cells and alternatively activated macrophages, resulting in modulation of the host–immune system. Studies on these parasite-induced immunoregulatory mechanisms might contribute to the development of new therapies for inflammatory diseases, including type 2 diabetes (T2D). Previous studies have suggested that progression of obesity-associated metabolic abnormalities is under pathophysiological control of CD4+ T cells. Glucose absorption through the intestinal epithelium reduced after infection in a STAT-6-dependent manner. In this study, we investigated whether infection with the gastrointestinal nematode parasite Heligmosomoides polygyrus (Hp) can modulate T2D-associated pathology in a mouse model (KK-Ay/TaJcl). KK-Ay/TaJcl mice were inoculated with infective third-stage Hp larvae and studied at Day 8 following infection. Uninfected KK-Ay/TaJcl mice showed high blood glucose levels even 120 min after administration of glucose by IP injection. However, it was significantly improved in the infected group. HOMA-IR, fat accumulation and FAS gene expression in the liver were significantly decreased by Hp infection. GLUT2 gene expression in this group was significantly lower than that in the uninfected diabetic mice, which might be related to the decrease in glucose absorption in the parasite-infected intestine. In conclusion, helminth-induced type 2 immune responses might contribute to T2D disease control.
The Southern Granulite Terrane in India comprises a number of Archean to Neoproterozoic magmatic arcs and supracrustal units that underwent latest Neoproterozoic to Cambrian high‐grade metamorphism. Here, we present a new petrological and geochronological data from khondalites in the western part of the Trivandrum Block and discuss pressure‐temperature‐time (P–T–t) path of the block for unravelling the duration and heat source of high‐grade metamorphism. Phase equilibria modelling of the khondalite indicates peak P–T condition of 920°C–1,030°C and 6.0–7.6 kbar, suggesting ultrahigh‐temperature (UHT) metamorphism. Prograde and retrograde P–T conditions of ~750°C/~7 kbar and ~750°C/~4 kbar, respectively, were also obtained, based on which a clockwise P–T path with geotherm‐parallel slow cooling is inferred. Zircon and monazite U–Pb geochronology and rare‐earth elements (REE) patterns suggest that heavy rare‐earth elements (HREE)‐depleted zircons grew together with garnet during prograde partial melting at >810°C or during fluid activity at around 582 ± 17 Ma, which was followed by peak UHT metamorphism at 555.1 ± 8.1 Ma as inferred from the dominant monazite ages. Relatively HREE‐enriched zircons (527.3 ± 8.0 Ma) and monazites (501.9 ± 8.5 Ma) were probably formed by garnet breakdown during retrograde metamorphism. The growth of HREE‐enriched zircons at 489 ± 12 Ma might be related to later fluid infiltration and hydration of garnet to form biotite at <770°C/~4 kbar. Our results suggest that high‐grade metamorphism continued at least 90 Myr, from 582 to 489 Ma, suggesting a long‐lived thermal event possibly related to the input of radiogenic heat from the crust and/or magmatic heat from syntectonic to post‐tectonic intrusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.