A Ginzburg-Landau theory is presented to investigate solvation effects in near-critical polar fluid binary mixtures. Concentration dependence of the dielectric constant gives rise to a shell region around a charged particle within which solvation occurs preferentially. As the critical point is approached, the concentration has a long-range Ornstein-Zernike tail representing strong critical electrostriction. If salt is added, strong coupling arises among the critical fluctuations and the ions. The structure factors of the critical fluctuations and the charge density are calculated and the phase transition behavior is discussed.
Since the invention of the first lasers in the visible-light region, research has aimed to produce short-wavelength lasers that generate coherent X-rays; the shorter the wavelength, the better the imaging resolution of the laser and the shorter the pulse duration, leading to better temporal resolution in probe measurements. Recently, free-electron lasers based on self-amplified spontaneous emission have made it possible to generate a hard-X-ray laser (that is, the photon energy is of the order of ten kiloelectronvolts) in an ångström-wavelength regime, enabling advances in fields from ultrafast X-ray spectrosopy to X-ray quantum optics. An atomic laser based on neon atoms and pumped by a soft-X-ray (that is, a photon energy of less than one kiloelectronvolt) free-electron laser has been achieved at a wavelength of 14 nanometres. Here, we use a copper target and report a hard-X-ray inner-shell atomic laser operating at a wavelength of 1.5 ångströms. X-ray free-electron laser pulses with an intensity of about 10(19) watts per square centimetre tuned to the copper K-absorption edge produced sufficient population inversion to generate strong amplified spontaneous emission on the copper Kα lines. Furthermore, we operated the X-ray free-electron laser source in a two-colour mode, with one colour tuned for pumping and the other for the seed (starting) light for the laser.
In 1913, Maurice de Broglie discovered the presence of X-ray absorption bands of silver and bromine in photographic emulsion. Over the following century, X-ray absorption spectroscopy was established as a standard basis for element analysis, and further applied to advanced investigation of the structures and electronic states of complex materials. Here we show the first observation of an X-ray-induced change of absorption spectra of the iron K-edge for 7.1-keV ultra-brilliant X-ray free-electron laser pulses with an extreme intensity of 10(20) W cm(-2). The highly excited state yields a shift of the absorption edge and an increase of transparency by a factor of 10 with an improvement of the phase front of the transmitted X-rays. This finding, the saturable absorption of hard X-rays, opens a promising path for future innovations of X-ray science by enabling novel attosecond active optics, such as lasing and dynamical spatiotemporal control of X-rays.
Solid hydrogen, a simple system consisting only of protons and electrons, exhibits a variety of structural phase transitions at high pressures. Experimental studies based on static compression up to about 230 GPa revealed three relevant phases of solid molecular hydrogen: phase I (high-temperature, low-pressure phase), phase II (low-temperature phase) and phase III (high-pressure phase). Spectroscopic data suggest that symmetry breaking, possibly related to orientational ordering, accompanies the transition into phases II and III. The boundaries dividing the three phases exhibit a strong isotope effect, indicating that the quantum-mechanical properties of hydrogen nuclei are important. Here we report the quantum distributions of protons in the three phases of solid hydrogen, obtained by a first-principles path-integral molecular dynamics method. We show that quantum fluctuations of protons effectively hinder molecular rotation--that is, a quantum localization occurs. The obtained crystal structures have entirely different symmetries from those predicted by the conventional simulations which treat protons classically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.