Microbial communities are a key component of healthy soils. Spore-forming microorganisms represent a large fraction of this community—termed the “sporobiota”—and play a central role in creating a conducive environment for plant growth and food production.
The bacteriocin AS-48 was not active against intact cells ofSalmonella choleraesuis LT2 at neutral pH, but it was very effective on spheroplasts, suggesting that the outer membrane (OM) acts as a protective barrier. Cells sublethally injured by heat or treated with OM-permeabilizing agents (i.e., EDTA and Tris) became sensitive to AS-48. The combination of two or more treatments decreased the amount of AS-48 required for cell killing. The activity of AS-48 against heat-injured cells did not change significantly in the pH range of 4.0 to 8.0. AS-48 showed bactericidal activity against intact cells ofSalmonella at pH 4.0. The potency of AS-48 increased greatly when the bacteriocin was dissolved at pH 9.0.
In this study, we determined whether pre-adapting Lactiplantibacillus pentosus strains, isolated from Aloreña green table olives, to vegetable-based edible oils improved their robustness and functionality; this may have great importance on their stress response during fermentation, storage, and digestion. Pre-adapting the strains to the corresponding oils significantly increased their probiotic functionality (e.g., auto-aggregation, co-aggregation with pathogens, and mucin adhesion), although results depended on the strain and the oil used for pre-adaptation. As such, we selected olive-adapted (TO) L. pentosus AP2-16, which exhibited improved functionality, and subjected it to transcriptomic profiling with the aim to understand the molecular mechanisms involved in the adaptation and the increased functionality. Global transcriptomic analysis of oil-adapted (olive or almond) and non-adapted (control) L. pentosus AP2-16 realized that 3,259 genes were expressed, with 2,779 mapped to the reference database. Comparative transcriptomic analysis showed that 125 genes (olive vs. control) and 108 genes (olive vs. almond) became significantly differentially expressed. TO L. pentosus AP2-16 responded by rerouting its metabolic pathways to balance energy production and storage, cell growth and survivability, host interactions (glycoconjugates), and other physiological features. As such, the pre-adaptation of lactobacilli with olive oil switches their transcriptional network to regulate robustness and functionality, possibly representing a novel approach toward the design and manufacture of probiotic products with improved stability and functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.