Ultisols are a major group of marginal soils extensively found in the upland area of Indonesia. To better understand the potential of the Ultisols developed from claystone and sandstone in the Sasamba Integrated Economical Development Area in East Kalimantan, chemical and mineralogical characteristics of 27 Ultisols pedons consisting of 76 topsoil and 118 subsoil samples were investigated. Besides analysis and interpretation of data, relationships of several soil characteristics were constructed using simple regression. The results indicated that Ultisols showed acid to very acid reaction, had low content of organic matter and low base saturation. Soils generally exhibited net negative charge, and the point of zero charge was reached at pH 3.6. Both potential and available phosphates were low, and there was a trend that amorphous aluminum was responsible for phosphate fixation. The low content of exchangeable potassium in topsoil and subsoil indicated a positive correlation with potential potassium. Clay mineral was composed chiefly of kaolinite, with small amounts of illite, vermiculite, and quartz. The domination of kaolinite and low organic matter content causes the soils to have low cation exchange capacity. Soil management in this area should be focused on building up and maintaining soil fertility, and applying appropriate soil conservation techniques to minimize erosion. To obtain sustained productivity, various soil amendments including the use of farm and/or green manure, liming with agricultural lime, and application of rock phosphate and K fertilizers were highly recommended.
Kelimutu stratovolcano is one of the young volcanoes extensively found in Flores island. Studies on volcanic soil properties and their suitability for agricultural development in the whole island are lacking. The research was conducted to evaluate the relationship of elevation and soil properties, and suitability for agricultural development. Five representative pedons at elevation of 550, 1,000, 1,200, 1,400, and 1,600 m above sea level (asl), respectively, were studied in the field, and 22 soil samples were analyzed in the laboratory. The results indicated that elevation significantly affected soil properties and degree of soil weathering. With decreasing elevation, sand content, amorphous material content, and phosphate retention decreased. Concomitantly, clay content, H2O-pH, exchangeable Ca and Mg, base saturation, and soil-CEC increased. A highly positive correlation was shown between P retention and NaFpH, Al, and (Al+0.5 Fe) contents extracted by acid ammonium oxalate. Soil-CEC also showed significant positive correlation with clay and silt contents, organic carbon, and exchangeable Ca and Mg. Degree of weathering increased with decreasing elevation as reflected by decreasing silt/clay ratio. Soils developed from Entisols (Lithic Udorthents) at 1,600 m asl, to Andisols (Typic Hapludands) at 1,000-1,400 m asl, and Mollisols (Typic Hapludolls) at lower elevation down to 550 m asl. Soils at 1,400-1,600 m asl are unsuitable for agriculture. Soils at 1,000-1,200 m are moderately suitable for food crops, horticulture, and estate crops. Dominant limiting factors are steep slopes and P retention. Soils at 550 m asl are suitable for food and estate crops, and also lowland horticulture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.