SUMMARYIn legumes, the number of symbiotic root nodules is controlled by long-distance communication between the shoot and the root. Mutants defective in this feedback mechanism exhibit a hypernodulating phenotype. Here, we report the identification of a novel leucine-rich repeat receptor-like kinase (LRR-RLK), KLAVIER (KLV), which mediates the systemic negative regulation of nodulation in Lotus japonicus. In leaf, KLV is predominantly expressed in the vascular tissues, as with another LRR-RLK gene, HAR1, which also regulates nodule number. A double-mutant analysis indicated that KLV and HAR1 function in the same genetic pathway that governs the negative regulation of nodulation. LjCLE-RS1 and LjCLE-RS2 represent potential root-derived mobile signals for the HAR1-mediated systemic regulation of nodulation. Overexpression of LjCLE-RS1 or LjCLE-RS2 did not suppress the hypernodulation phenotype of the klv mutant, indicating that KLV is required and acts downstream of LjCLE-RS1 and LjCLE-RS2. In addition to the role of KLV in symbiosis, complementation tests and expression analyses indicated that KLV plays multiple roles in shoot development, including maintenance of shoot apical meristem, vascular continuity, shoot growth and promotion of flowering. Biochemical analyses using transient expression in Nicotiana benthamiana revealed that KLV has the ability to interact with HAR1 and with itself. Together, these results suggest that the potential KLV-HAR1 receptor complex regulates symbiotic nodule development and that KLV is also a key component in other signal transduction pathways that mediate non-symbiotic shoot development.
Legume-rhizobium symbiosis occurs in specialized root organs called nodules. To establish the symbiosis, two major genetically controlled events, rhizobial infection and organogenesis, must occur. For a successful symbiosis, it is essential that the two phenomena proceed simultaneously in different root tissues. Although several symbiotic genes have been identified during genetic screenings of nonsymbiotic mutants, most of the mutants harbor defects in both infection and organogenesis pathways, leading to experimental difficulty in investigating the molecular genetic relationships between the pathways. In this study, we isolated a novel nonnodulation mutant, daphne, in Lotus japonicus that shows complete loss of nodulation but a dramatically increased numbers of infection threads. Characterization of the locus responsible for these phenotypes revealed a chromosomal translocation upstream of NODULE INCEPTION (NIN) in daphne. Genetic analysis using a known nin mutant revealed that daphne is a novel nin mutant allele. Although the daphne mutant showed reduced induction of NIN after rhizobial infection, the spatial expression pattern of NIN in epidermal cells was broader than that in the wild type. Overexpression of NIN strongly suppressed hyperinfection in daphne, and daphne phenotypes were partially rescued by cortical expression of NIN. These observations suggested that the daphne mutation enhanced the role of NIN in the infection pathway due to a specific loss of the role of NIN in nodule organogenesis. Based on these results, we provide evidence that the bifunctional transcription factor NIN negatively regulates infection but positively regulates nodule organogenesis during the course of the symbiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.