An in-depth spectroscopic EPR investigation of a key intermediate, formally notated as [PV(IV)V(V)Mo(10)O(40)](6-) and formed in known electron-transfer and electron-transfer/oxygen-transfer reactions catalyzed by H(5)PV(2)Mo(10)O(40), has been carried out. Pulsed EPR spectroscopy have been utilized: specifically, W-band electron-electron double resonance (ELDOR)-detected NMR and two-dimensional (2D) hyperfine sub-level correlation (HYSCORE) measurements, which resolved (95)Mo and (17)O hyperfine interactions, and electron-nuclear double resonance (ENDOR), which gave the weak (51)V and (31)P interactions. In this way, two paramagnetic species related to [PV(IV)V(V)Mo(10)O(40)](6-) were identified. The first species (30-35 %) has a vanadyl (VO(2+))-like EPR spectrum and is not situated within the polyoxometalate cluster. Here the VO(2+) was suggested to be supported on the Keggin cluster and can be represented as an ion pair, [PV(V)Mo(10)O(39)](8-)[V(IV)O(2+)]. This species originates from the parent H(5)PV(2)Mo(10)O(40) in which the vanadium atoms are nearest neighbors and it is suggested that this isomer is more likely to be reactive in electron-transfer/oxygen-transfer reaction oxidation reactions. In the second (70-65 %) species, the V(IV) remains embedded within the polyoxometalate framework and originates from reduction of distal H(5)PV(2)Mo(10)O(40) isomers to yield an intact cluster, [PV(IV)V(V)Mo(10)O(40)](6-).
The H(5)PV(2)Mo(10)O(40) polyoxometalate and Pd/Al(2)O(3) were used as co-catalysts under anaerobic conditions for the activation and oxidation of CO to CO(2) by an electron transfer-oxygen transfer mechanism. Upon anaerobic reduction of H(5)PV(2)Mo(10)O(40) with CO in the presence of Pd(0) two paramagnetic species were observed and characterized by continuous wave electron paramagnetic resonance (CW-EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopic measurements. Major species I (65-70%) is assigned to a species resembling a vanadyl cation that is supported on the polyoxometalate and showed a bonding interaction with (13)CO. Minor species II (30-35%) is attributed to a reduced species where the vanadium(IV) atom is incorporated in the polyoxometalate framework but slightly distanced from the phosphate core. Under aerobic conditions, CO/O(2), a nucleophilic oxidant was formed as elucidated by oxidation of thianthrene oxide as a probe substrate. Oxidation reactions performed on terminal alkenes such as 1-octene yielded a complicated mixture of products that was, however, clearly a result of alkene epoxidation followed by subsequent reactions of the intermediate epoxide. The significant competing reaction was a hydrocarbonylation reaction that yielded a approximately 1:1 mixture of linear/branched carboxylic acids.
Aerobic Catalysis. -Two paramagnetic species are observed in the anaerobic oxidation of CO using H5PV2Mo10O40 and Pd/Al2O3 as co-catalysts. One of these species resembles a vanadyl cation and shows a bonding interaction with CO. Oxygen transfer from the polyoxometalate results in the formation of CO2. Under aerobic conditions in the presence of terminal alkenes such as 1-octene, epoxidation and hydrocarbonylation is observed. -(GOLDBERG, H.; KAMINKER, I.; GOLDFARB, D.; NEUMANN*, R.; Inorg. Chem. 48 (2009) 16, 7947-7952; Dep. Org. Chem., Weizmann Inst. Sci., Rehovot 76100, Israel; Eng.) -Schramke 43-014
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.