Purpose Infection near metal implants is a problem that presents challenging treatment dilemmas for physicians. The aim of this study was to analyse the efficacy of two treatment protocols for acute fracture-related infections. Methods Seventy-one patients in two level-1 trauma centres in the Netherlands were retrospectively included in this study. These trauma centres had different standardised protocols for acute infection after osteosynthesis: 39 patients were selected from protocol A and 32 from protocol B. Both protocols involve immediate surgical debridement and soft tissue coverage, but differ in antibiotic approach: (A) immediate empirical combination antibiotic therapy with rifampicin, or (B) postponed (1-5 days) targeted antibiotic therapy. The primary outcome of these protocols was success, defined as a fracture healing in the absence of infection. The secondary outcome was antibiotic resistance patterns. Logistic regression was conducted on patients and treatment-related factors in association with primary success. Results Primary success was achieved in 72% of protocol A patients, in 47% of those in protocol B (P = 0.033), and with prolongation of treatment success was achieved in 90% and 78% of patients, respectively. Protocol A exhibited a better primary success rate (adjusted OR 3.45, CI 1.13-10.52) when adjusted for age and soft tissue injury. There was no significant difference in antibiotic resistance between the two protocols. Conclusion Both protocols yielded high overall success rates. Immediate empirical antibiotics can be used safely without additional bacterial resistance and may contribute to increased success rates.
A renal core biopsy for histological evaluation is the gold standard for diagnosing renal transplant pathology. However, renal biopsy interpretation is subjective and can render insufficient precision, making it difficult to apply a targeted therapeutic regimen for the individual patient. This warrants a need for additional methods assessing disease state in the renal transplant. Significant research activity has been focused on the role of molecular analysis in the diagnosis of renal allograft rejection. The identification of specific molecular expression patterns in allograft biopsies related to different types of allograft injury could provide valuable information about the processes underlying renal transplant dysfunction and can be used for the development of molecular classifier scores, which could improve our diagnostic and prognostic ability and could guide treatment. Molecular profiling has the potential to be more precise and objective than histological evaluation and may identify injury even before it becomes visible on histology, making it possible to start treatment at the earliest time possible. Combining conventional diagnostics (histology, serology, and clinical data) and molecular evaluation will most likely offer the best diagnostic approach. We believe that the use of state-of-the-art molecular analysis will have a significant impact in diagnostics after renal transplantation. In this review, we elaborate on the molecular phenotype of both acute and chronic T cell-mediated rejection and antibody-mediated rejection and discuss the additive value of molecular profiling in the setting of diagnosing renal allograft rejection and how this will improve transplant patient care.
IntroductionA decentralized and multi-platform-compatible molecular diagnostic tool for kidney transplant biopsies could improve the dissemination and exploitation of this technology, increasing its clinical impact. As a first step towards this molecular diagnostic tool, we developed and validated a classifier using the genes of the Banff-Human Organ Transplant (B-HOT) panel extracted from a historical Molecular Microscope® Diagnostic system microarray dataset. Furthermore, we evaluated the discriminative power of the B-HOT panel in a clinical scenario.Materials and MethodsGene expression data from 1,181 kidney transplant biopsies were used as training data for three random forest models to predict kidney transplant biopsy Banff categories, including non-rejection (NR), antibody-mediated rejection (ABMR), and T-cell-mediated rejection (TCMR). Performance was evaluated using nested cross-validation. The three models used different sets of input features: the first model (B-HOT Model) was trained on only the genes included in the B-HOT panel, the second model (Feature Selection Model) was based on sequential forward feature selection from all available genes, and the third model (B-HOT+ Model) was based on the combination of the two models, i.e. B-HOT panel genes plus highly predictive genes from the sequential forward feature selection. After performance assessment on cross-validation, the best-performing model was validated on an external independent dataset based on a different microarray version.ResultsThe best performances were achieved by the B-HOT+ Model, a multilabel random forest model trained on B-HOT panel genes with the addition of the 6 most predictive genes of the Feature Selection Model (ST7, KLRC4-KLRK1, TRBC1, TRBV6-5, TRBV19, and ZFX), with a mean accuracy of 92.1% during cross-validation. On the validation set, the same model achieved Area Under the ROC Curve (AUC) of 0.965 and 0.982 for NR and ABMR respectively.DiscussionThis kidney transplant biopsy classifier is one step closer to the development of a decentralized kidney transplant biopsy classifier that is effective on data derived from different gene expression platforms. The B-HOT panel proved to be a reliable highly-predictive panel for kidney transplant rejection classification. Furthermore, we propose to include the aforementioned 6 genes in the B-HOT panel for further optimization of this commercially available panel.
Background. Transcriptome analysis could be an additional diagnostic parameter in diagnosing kidney transplant (KTx) rejection. Here, we assessed feasibility and potential of NanoString nCounter analysis of KTx biopsies to aid the classification of rejection in clinical practice using both the Banff-Human Organ Transplant (B-HOT) panel and a customized antibody-mediated rejection (AMR)–specific NanoString nCounter Elements (Elements) panel. Additionally, we explored the potential for the classification of KTx rejection building and testing a classifier within our dataset. Methods. Ninety-six formalin-fixed paraffin-embedded KTx biopsies were retrieved from the archives of the ErasmusMC Rotterdam and the University Hospital Cologne. Biopsies with AMR, borderline or T cell–mediated rejections (BLorTCMR), and no rejection were compared using the B-HOT and Elements panels. Results. High correlation between gene expression levels was found when comparing the 2 chemistries pairwise (r = 0.76–0.88). Differential gene expression (false discovery rate; P < 0.05) was identified in biopsies diagnosed with AMR (B-HOT: 294; Elements: 76) and BLorTCMR (B-HOT: 353; Elements: 57) compared with no rejection. Using the most predictive genes from the B-HOT analysis and the Element analysis, 2 least absolute shrinkage and selection operators–based regression models to classify biopsies as AMR versus no AMR (BLorTCMR or no rejection) were developed achieving an receiver-operating–characteristic curve of 0.994 and 0.894, sensitivity of 0.821 and 0.480, and specificity of 1.00 and 0.979, respectively, during cross-validation. Conclusions. Transcriptomic analysis is feasible on KTx biopsies previously used for diagnostic purposes. The B-HOT panel has the potential to differentiate AMR from BLorTCMR or no rejection and could prove valuable in aiding kidney transplant rejection classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.