The aim of the present study was to optimise the production of a biosurfactant by a new strain of Pseudomonas cepacia CCT6659 with aid of a combination of central composite rotatable design (CCRD) and response surface methodology (RSM). The factors selected for optimisation of the growth conditions were canola waste frying oil, corn steep liquor and NaNO3 substrate concentrations. Surface tension was chosen as the response variable. All factors studied were important within the ranges investigated. The empirical forecast model developed through RSM regarding effective nutritional factors was adequate for explaining 89 % of the variation observed in biosurfactant production. Maximal reduction in surface tension of 26 mN m–1 was obtained under the optimal conditions of 2 % waste frying oil, 3 % corn steep liquor and 0.2 % NaNO3. The accumulation of isolated biosurfactant increased from 2 g L–1 to 8.0 g L–1 under these conditions, demonstrating that the factorial design is adequate for identifying the optimal conditions for biosurfactant production.
Abstract. The solid flow in air-catalyst in circulating fluidized bed was simulated with CFD model to obtain axial and radial distribution. Therefore, project parameters were confirmed and steady state operation condition was improved. Solid holds up axial end radial profiles simulation and comparison with gamma transmission measurements are in a good agreement. The transmission signal from an 241 Am radioactive source was evaluated in NaI(Tl) detector coupled to multichannel analyzer. This non intrusive measuring set up is installed at riser of a cold pilot unit to determine parameters of FCC catalyst flow at several concentrations. Mass flow rate calculated by combining solid hold up and solid phase velocity measurements was compared with catalyst inlet measured at down-comer. Evaluation in each measured parameter shows that a relative combined uncertainty of 6% in a 95% interval was estimated. Uncertainty analysis took into account a significant correlation in scan riser transmission measurements. An Eulerian approach of CFD model incorporating the kinetic theory of granular flow was adopted to describe the gas-solid two-phase flows in a multizone circulating reactor. Instantaneous and local gas-particle velocity, void fraction and turbulent parameters were obtained and results are shown in 2 D and 3D graphics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.