Population divergence of phytophagous insects is often coupled to host-plant shifts and is frequently attributed to the divergent selective environments associated with alternative host-plants. In some cases, however, divergence is associated with the use of alternative host-plant organs of a single host species. The basis of within-host radiations such as these remains poorly understood. In the present stusy, we analysed the radiation of Asteromyia gall midges occurring both within one host plant species and within a single organ on that host. In this system, four morphologically distinct Asteromyia gall forms (morphs) coexist on the leaves of goldenrod Solidago altissima. Our analyses of amplified fragment length polymorphism and DNA sequence data confirm the genetic differentiation among midges from three gall morphs and reveal evidence of a genetically distinct fourth gall morph. The absence of clear gall morph related clades in the mitochondrial DNA derived phylogenies is indicative of incomplete lineage sorting or recent gene flow, suggesting that population divergence among gall forms is recent. We assess the likely history of this radiation and use the results of phylogenetic analyses along with ecological data on phenology and parasitism rates to evaluate potential hypotheses for the mode of differentiation. These preliminary analyses suggest that diversification of the Asteromyia gall morphs is likely shaped by interactions between the midge, a symbiotic fungus, and parasitoid enemies.
Habitat fragmentation and invasive species are two of the most prominent threats to terrestrial ecosystems. Few studies have examined how these factors interact to influence the diversity of natural communities, particularly primary consumers. Here, we examined the effects of forest fragmentation and invasion of exotic honeysuckle (Lonicera maackii, Caprifoliaceae) on the abundance and diversity of the dominant forest herbivores: woody plant-feeding Lepidoptera. We systematically surveyed understory caterpillars along transects in 19 forest fragments over multiple years in southwestern Ohio and evaluated how fragment area, isolation, tree diversity, invasion by honeysuckle and interactions among these factors influence species richness, diversity and abundance. We found strong seasonal variation in caterpillar communities, which responded differently to fragmentation and invasion. Abundance and richness increased with fragment area, but these effects were mitigated by high levels of honeysuckle, tree diversity, landscape forest cover, and large recent changes in area. Honeysuckle infestation was generally associated with decreased caterpillar abundance and diversity, but these effects were strongly dependent on other fragment traits. Effects of honeysuckle on abundance were moderated when fragment area, landscape forest cover and tree diversity were high. In contrast, negative effects of honeysuckle invasion on caterpillar diversity were most pronounced in fragments with high tree diversity and large recent increases in area. Our results illustrate the complex interdependencies of habitat fragmentation, plant diversity and plant invasion in their effects on primary consumers and emphasize the need to consider these processes in concert to understand the consequences of anthropogenic habitat change for biodiversity.
Natural selection can play an important role in the genetic divergence of populations and their subsequent speciation. Such adaptive diversification, or ecological speciation, might underlie the enormous diversity of plant-feeding insects that frequently experience strong selection pressures associated with host plant use as well as from natural enemies. This view is supported by increasing documentation of host-associated (genetic) differentiation in populations of plant-feeding insects using alternate hosts. Here, we examine evolutionary diversification in a single nominal taxon, the gall midge Asteromyia carbonifera (O.S.), with respect to host plant use and gall phenotype. Because galls can be viewed as extended defensive phenotypes of the midges, gall morphology is likely to be a reflection of selective pressures by enemies. Using phylogenetic and comparative analyses of mtDNA and nuclear sequence data, we find evidence that A. carbonifera populations are rapidly diversifying along host plant and gall morphological lines. At a broad scale, geography explains surprisingly little genetic variation, and there is little evidence of strict co-cladogenesis with their Solidago hosts. Gall morphology is relatively labile, distinct gall morphs have evolved repeatedly and colonized multiple hosts, and multiple genetically and morphologically distinct morphs frequently coexist on a single host plant species. These results suggest that Asteromyia carbonifera is in the midst of an adaptive radiation driven by multitrophic selective pressures. Similar complex community pressures are likely to play a role in the diversification of other herbivorous insect groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.