Genomics promises to enrich the investigations of biology and biochemistry. Current advancements in genomics have major implications for genetic improvement in animals, plants, and microorganisms, and for our understanding of cell growth, development, differentiation, and communication. Significant progress has been made in the understanding of plant genomics in recent years, and the area continues to progress rapidly. Functional genomics offers enormous potential to tree improvement and the understanding of gene expression in this area of science worldwide. In this review we focus on functional genomics of wood quality and properties in trees, mainly based on progresses made in genomics study of Pinus and Populus. The aims of this review are to summarize the current status of functional genomics including: (1) Gene discovery; (2) EST and genomic sequencing; (3) From EST to functional genomics; (4) Approaches to functional analysis; (5) Engineering lignin biosynthesis; (6) Modification of cell wall biogenesis; and (7) Molecular modelling. Functional genomics has been greatly invested worldwide and will be important in identifying candidate genes whose function is critical to all aspects of plant growth, development, differentiation, and defense. Forest biotechnology industry will significantly benefit from the advent of functional genomics of wood quality and properties.
Genomic research has made a large number of sequences of novel genes or expressed sequence tags available. To investigate functions of these genes, a system for conditional control of gene expression would be a useful tool. Inducible transgene expression that uses green fluorescent protein gene (gfp) as a reporter gene has been investigated in transgenic cell lines of cotton (COT; Gossypium hirsutum L.), Fraser fir [FRA; Abies fraseri (Pursh) Poir], Nordmann fir (NOR; Abies nordmanniana Lk.), and rice (RIC; Oryza sativa L. cv. Radon). Transgenic cell lines were used to test the function of the chemical inducer dexamethasone. Inducible transgene expression was observed with fluorescence and confocal microscopy, and was confirmed by northern blot analyses. Dexamethasone at 5 mg/L induced gfp expression to the nearly highest level 48 h after treatment in COT, FRA, NOR, and RIC. Dexamethasone at 10 mg/L inhibited the growth of transgenic cells in FRA and NOR, but not COT and RIC. These results demonstrated that concentrations of inducer for optimum inducible gene expression system varied among transgenic cell lines. The inducible gene expression system described here was very effective and could be valuable in evaluating the function of novel gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.