BackgroundHoney has previously been shown to have wound healing and antimicrobial properties, but this is dependent on the type of honey, geographical location and flower from which the final product is derived. We tested the antimicrobial activity of a Chilean honey made by Apis mellifera (honeybee) originating from the Ulmo tree (Eucryphia cordifolia), against selected strains of bacteria.MethodsUlmo 90 honey was compared with manuka UMF® 25+ (Comvita®) honey and a laboratory synthesised (artificial) honey. An agar well diffusion assay and a 96 well minimum inhibitory concentration (MIC) spectrophotometric-based assay were used to assess antimicrobial activity against five strains of methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa.ResultsInitial screening with the agar diffusion assay demonstrated that Ulmo 90 honey had greater antibacterial activity against all MRSA isolates tested than manuka honey and similar activity against E. coli and P. aeruginosa. The MIC assay, showed that a lower MIC was observed with Ulmo 90 honey (3.1% - 6.3% v/v) than with manuka honey (12.5% v/v) for all five MRSA isolates. For the E. coli and Pseudomonas strains equivalent MICs were observed (12.5% v/v). The MIC for artificial honey was 50% v/v. The minimum bactericidal concentration for all isolates tested for Ulmo 90 honey was identical to the MIC. Unlike manuka honey, Ulmo 90 honey activity is largely due to hydrogen peroxide production.ConclusionsDue to its high antimicrobial activity, Ulmo 90 may warrant further investigation as a possible alternative therapy for wound healing.
Prosthetic aortic graft infections represent a major diagnostic and therapeutic challenge. Although a combination of clinical assessment, imaging and microbiological investigations is usually helpful, there are no agreed criteria to confirm a diagnosis. Potential pathogens isolated from superficial specimens may be misleading but influence the choice of antimicrobial agents. Removal of the infected material is strongly recommended. However, this is not always possible in the very debilitated or clinically unstable patient. The choice of which antimicrobial agents to administer as empirical or definitive therapy and the duration of treatment are unclear. A multi-disciplinary group is required to offer guidance, based on what evidence there is, and to provide expert consensus (as is the case for infective endocarditis) to optimize the management of these difficult infections.
Mechanisms of protective immunity to Staphylococcus aureus infection in humans remain elusive. While the importance of cellular immunity has been shown in mice, T cell responses in humans have not been characterised. Using a murine model of recurrent S. aureus peritonitis, we demonstrated that prior exposure to S. aureus enhanced IFNγ responses upon subsequent infection, while adoptive transfer of S. aureus antigen-specific Th1 cells was protective in naïve mice. Translating these findings, we found that S. aureus antigen-specific Th1 cells were also significantly expanded during human S. aureus bloodstream infection (BSI). These Th1 cells were CD45RO+, indicative of a memory phenotype. Thus, exposure to S. aureus induces memory Th1 cells in mice and humans, identifying Th1 cells as potential S. aureus vaccine targets. Consequently, we developed a model vaccine comprising staphylococcal clumping factor A, which we demonstrate to be an effective human T cell antigen, combined with the Th1-driving adjuvant CpG. This novel Th1-inducing vaccine conferred significant protection during S. aureus infection in mice. This study notably advances our understanding of S. aureus cellular immunity, and demonstrates for the first time that a correlate of S. aureus protective immunity identified in mice may be relevant in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.