Background & Aims Indirect calorimetry (IC) is the gold-standard for determining measured resting energy expenditure (mREE) in critical illness. When IC is not available, predicted resting energy expenditure (pREE) equations are commonly utilized, which often inaccurately predict metabolic demands leading to over- or under-feeding. This study aims to longitudinally assess mREE via IC in critically ill patients with SARS-CoV-2 (COVID-19) infection throughout the entirety of, often prolonged, intensive care unit (ICU) stays and compare mREE to commonly utilized pREE equations. Methods This single-center prospective cohort study of 38 mechanically ventilated COVID-19 patients from April 1, 2020 to February 1, 2021. The Q-NRG® Metabolic Monitor was used to obtain IC data. The Harris-Benedict (HB), Mifflin St-Jeor (MSJ), Penn State University (PSU), and weight-based equations from the American Society of Parenteral and Enteral Nutrition – Society of Critical Care Medicine (ASPEN-SCCM) Clinical Guidelines were utilized to assess the accuracy of common pREE equations and their ability to predict hypo/hypermetabolism in COVID-19 ICU patients. Results The IC measures collected revealed a relatively normometabolic or minimally hypermetabolic mREE at 21.3 kcal/kg/d or 110% of predicted by the HB equation over the first week of mechanical ventilation (MV). This progressed to significant and uniquely prolonged hypermetabolism over successive weeks to 28.1 kcal/kg/d or 143% of HB predicted by MV week 3, with hypermetabolism persisting to MV week 7. Obese individuals displayed a more truncated response with significantly lower mREE versus non-obese patients in MV week 1 (19.5±1.0 kcal/kg/d vs 25.1±1.8 kcal/kg/d, respectively; p < 0.01), with little change in weeks 2-3 (19.5±1.5 kcal/kg/d vs 28.0±2.0 kcal/kg/d; p < 0.01). Both ASPEN-SCCM upper range and PSU pREE equations provided close approximations of mREE yet, like all pREE equations, occasionally over- and under-predicted energy needs and typically did not predict late hypermetabolism. Conclusions Study results show a truly unique metabolic response in COVID-19 ICU patients, characterized by significant and prolonged, progressive hypermetabolism peaking at 3 weeks’ post-intubation, persisting for up to 7 weeks in ICU. This pattern was more clearly demonstrated in non-obese versus obese patients. This response is unique and distinct from any previously described model of ICU stress response in its prolonged hypermetabolic nature. This data reaffirms the need for routine, longitudinal IC measures to provide accurate energy targets in COVID-19 ICU patients. The PSU and ASPEN-SCCM equations appear to yield the most reasonable estimation to IC-derived mREE in COVID-19 ICU patients, yet still often over-/under-predict energy needs. These findings provide a practical guide for caloric prescription in COVID-19 ICU patients in the absence of IC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.