Human adults recruit distinct networks of brain regions to think about the bodies and minds of others. This study characterizes the development of these networks, and tests for relationships between neural development and behavioral changes in reasoning about others’ minds (‘theory of mind’, ToM). A large sample of children (n = 122, 3–12 years), and adults (n = 33), watched a short movie while undergoing fMRI. The movie highlights the characters’ bodily sensations (often pain) and mental states (beliefs, desires, emotions), and is a feasible experiment for young children. Here we report three main findings: (1) ToM and pain networks are functionally distinct by age 3 years, (2) functional specialization increases throughout childhood, and (3) functional maturity of each network is related to increasingly anti-correlated responses between the networks. Furthermore, the most studied milestone in ToM development, passing explicit false-belief tasks, does not correspond to discontinuities in the development of the social brain.
How much of the structure of the human mind and brain is already specified at birth, and how much arises from experience? In this article, we consider the test case of extrastriate visual cortex, where a highly systematic functional organization is present in virtually every normal adult, including regions preferring behaviourally significant stimulus categories, such as faces, bodies, and scenes. Novel methods were developed to scan awake infants with fMRI, while they viewed multiple categories of visual stimuli. Here we report that the visual cortex of 4–6-month-old infants contains regions that respond preferentially to abstract categories (faces and scenes), with a spatial organization similar to adults. However, precise response profiles and patterns of activity across multiple visual categories differ between infants and adults. These results demonstrate that the large-scale organization of category preferences in visual cortex is adult-like within a few months after birth, but is subsequently refined through development.
One of the most widely cited features of the neural phenotype of autism is reduced "integrity" of long-range white matter tracts, a claim based primarily on diffusion imaging studies. However, many prior studies have small sample sizes and/or fail to address differences in data quality between those with autism spectrum disorder (ASD) and typical participants, and there is little consensus on which tracts are affected. To overcome these problems, we scanned a large sample of children with autism (n = 52) and typically developing children (n = 73). Data quality was variable, and worse in the ASD group, with some scans unusable because of head motion artifacts. When we follow standard data analysis practices (i.e., without matching head motion between groups), we replicate the finding of lower fractional anisotropy (FA) in multiple white matter tracts. However, when we carefully match data quality between groups, all these effects disappear except in one tract, the right inferior longitudinal fasciculus (ILF). Additional analyses showed the expected developmental increases in the FA of fiber tracts within ASD and typical groups individually, demonstrating that we had sufficient statistical power to detect known group differences. Our data challenge the widely claimed general disruption of white matter tracts in autism, instead implicating only one tract, the right ILF, in the ASD phenotype.diffusion-weighted imaging | connectivity W hat is the key difference in the brains of individuals with autism that accounts for the distinctive cognitive profile of this disorder? One of the most widely claimed brain signatures of autism spectrum disorder (ASD), reported in dozens of papers that used diffusion-weighted imaging (DWI), is reduced integrity of long-range fiber tracts (1). This finding has been taken as evidence that autism is fundamentally a "disconnection" syndrome, in which the core cognitive deficits result from reduced integration of information at the neural and cognitive levels (2-5). For example, it has been argued that the characteristic deficits in social cognition and language arise because these functions require rapid integration of information across spatially distant brain areas (3, 6, 7), which would likely be affected if major white matter tracts are compromised.Evidence for a general reduction in the "integrity"* of white matter in autism has come primarily from diffusion imaging studies that report reduced directionality of the diffusion of water molecules, or fractional anisotropy (FA), and increased speed of diffusion, or mean diffusivity (MD) of many major fiber bundles. However, the literature reveals little actual agreement on the existence and direction of group differences in diffusion parameters (reviewed in ref. 1). White-matter differences have been reported in various brain regions in positive and negative directions. Possible reasons for these inconsistent findings include small sample sizes [mean of ∼20 in each group, with 40% of studies scanning 15 or fewer participants with ASD (1)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.