At the saphenopopliteal region, the TN is at risk during EVA. In the distal two-thirds of the lower leg, the SN is at risk for (thermal) damage due to the small distance to the SSV and the absence of the deep fascia between both structures. The proximal one-third of the lower leg is the optimal region for EVA of the SSV to avoid nerve damage; the fascia between the SSV and the SN is a natural barrier in this region that could preclude (thermal) damage to the nerve.
Background: The aim of this work was to develop a three-dimensionally (3D) printed brace for the acute treatment of dorsally dislocated and correctly reduced distal radius fractures (DRF). The hypothesis was that a brace shaped to the mirror image of the contralateral (non-fractured) wrist will have an optimal anatomical fit, resulting in improved comfort and lower rates of secondary fracture displacement. Method: Validation: the circumference of both wrists and comfort of the brace were studied in healthy volunteers and effectiveness of the brace was evaluated in an ex vivo fracture model. Clinical study: the brace was tested for comfort and effectiveness in patients with a well reduced unstable DRF. Results: Validation: the circumference of both wrists may be different, the brace retained the reduction in the ex vivo fracture model and was well tolerated in the volunteers. Clinical study: in DRF patients comfort scores were lower and pain scores higher compared to the healthy volunteers. After 3 and 5 weeks all patients were independent in ADL according to the Katz-index. Posttraumatic swelling subsided in the first week. In two of the five patients secondary fracture dislocation occurred. Conclusions: Treatment of a dislocated DRF in the acute setting (day one) with a custom-made 3D printed brace, anatomically modelled from a 3D scan of the contralateral wrist, is possible. Difference between both wrists and posttraumatic swelling must be adapted for. The high rate of secondary fracture displacement led to early discontinuation of the study and a small sample size.
Iatrogenic nerve injury during fracture surgery of the upper arm is a well-known complication. Prevention of this type of injuries would be of great value. The literature describes several methods to reduce this type of injury, but no perfect solution is at hand. In this study we introduce a new radiographic evaluation of the course and variation of the radial nerve in the distal part of the humerus in relation to bony landmarks as observed on a plain (trauma) radiographs. Aim of this new approach is to reduce the chance of iatrogenic nerve injury by defining of a danger zone in the distal upper arm regarding the radial nerve and hence give an advise for future implant fabrication.Methods and findingsMeasurements were done on both arms of ten specially embalmed specimens. Arms were dissected and radiopaque wires attached to the radial nerve in the distal part of the upper arm. Digital radiographs were obtained to determine the course of the radial nerve in the distal 20 cm of the humerus in relation to bony landmarks; medial epicondyle and capitellum-trochlea projection (CCT). Analysis was done with ImageJ and Microsoft Excel software. We also compared humeral nail specifications from different companies with the course of the radial nerve to predict possible radial nerve damage.ResultsThe distance from the medial epicondyle to point where the radial nerve bends from posterior to lateral was 142 mm on AP radiographs and 152 mm measured on the lateral radiographs. The average distance from the medial epicondyle to point where the radial nerve bends from lateral to anterior on AP radiographs was 66 mm. On the lateral radiographs where the nerve moves away from the anterior cortex 83 mm to the center of capitellum and trochlea (CCT). The distance from the bifurcation of the radial nerve into the posterior interosseous nerve (PIN) and superficial radial nerve was 21 mm on AP radiographs and 42 mm on the lateral radiographs (CCT).ConclusionsThe course of the radial nerve in the distal part of the upper arm has great variety. Lateral fixation is relatively safe in a zone between the center of capitellum-trochlea and 48 mm proximal to this point. The danger zone in lateral fixation is in-between 48–122 mm proximal from CCT. In anteroposterior direction; distal fixation is dangerous between 21–101 mm measured from the medial epicondyle. The more distal, the more medial the nerve courses making it more valuable to iatrogenic damage. The IMN we compared with our data all show potential risk in case of (blind) distal locking, especially from lateral to medial direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.