We present a prototype natural-language problem-solving application for a financial services call center, developed as part of the Amitiés multilingual human-computer dialogue project. Our automated dialogue system, based on empirical evidence from real call-center conversations, features a datadriven approach that allows for mixed system/customer initiative and spontaneous conversation. Preliminary evaluation results indicate efficient dialogues and high user satisfaction, with performance comparable to or better than that of current conversational travel information systems.
In this paper we describe a Cross Document Summarizer XDoX designed specifically to summarize large document sets (50-500 documents and more). Such sets of documents are typically obtained from routing or filtering systems run against a continuous stream of data, such as a newswire. XDoX works by identifying the most salient themes within the set (at the granularity level that is regulated by the user) and composing an extraction summary, which reflects these main themes. In the current version, XDoX is not optimized to produce a summary based on a few unrelated documents; indeed, such summaries are best obtained simply by concatenating summaries of individual documents. We show examples of summaries obtained in our tests as well as from our participation in the first Document Understanding Conference (DUC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.