The milder clinical disease and higher nasal nitric oxide in individuals with biallelic mutations in RSPH1 provides evidence of a unique genotype-phenotype relationship in PCD, and suggests that mutations in RSPH1 may be associated with residual ciliary function.
Summary
Examination of ciliary ultrastructure remains the cornerstone diagnostic test for primary ciliary dyskinesia (PCD), a disease of abnormal ciliary structure and/or function. Obtaining a biopsy with sufficient interpretable cilia and producing quality transmission electron micrographs (TEM) is challenging. Methods for processing tissues for optimal preservation of axonemal structures are not standardized. This study describes our experience using a standard operating procedure (SOP) for collecting nasal scrape biopsies and processing TEMs in a centralized laboratory. We enrolled patients with suspected PCD at research sites of the Genetic Disorders of Mucociliary Clearance Consortium. Biopsies were performed according to a SOP whereby curettes were used to scrape the inferior surface of the inferior turbinate, with samples placed in fixative. Specimens were shipped to a central laboratory where TEMs were prepared and blindly reviewed. 448 specimens were obtained from 107 young children (0–5 years), 189 older children (5–18 years), and 152 adults (> 18 years), and 88% were adequate for formal interpretation. The proportion of adequate specimens was higher in adults than in children. 50% of the adequate TEMs showed normal ciliary ultrastructure, 39% showed hallmark ultrastructural changes of PCD, and 11% had indeterminate findings. Among specimens without clearly normal ultrastructure, 72% had defects of the outer and/or inner dynein arms, while 7% had central apparatus defects with or without inner dynein arm defects. In summary, nasal scrape biopsies can be performed in the outpatient setting and yield interpretable samples, when performed by individuals with adequate training and experience according to an SOP.
Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder of cilia structure, function, and biogenesis leading to chronic infections of the respiratory tract, fertility problems and disorders of organ laterality. The diagnosis can be challenging, using traditional tools such as characteristic clinical features, ciliary functional and ultra-structural defects; newer screening tools such as nasal nitric oxide levels and genetic testing add to the diagnostic algorithm. There are thirty-two known PCD causing genes, and in the future, comprehensive genetic testing may screen young infants prior to developing symptoms thus improving survival. Therapies include surveillance of pulmonary function and microbiology, in addition to airway clearance, antibiotics and ideally, early referral to bronchiectasis centers. As with CF, standardized care at specialized centers using a multidisciplinary approach likely improves outcomes. In conjunction with the CF foundation, the PCD foundation, and with lead investigators and clinicians, is developing a network of PCD clinical centers to coordinate the effort in North America and Europe. As the network grows, care and knowledge will improve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.