Acquired thrombotic thrombocytopenic purpura (aTTP) is linked with significant morbidity/mortality.
Caplacizumab's effect on major thromboembolic (TE) events, exacerbations and death was studied.
Fewer caplacizumab‐treated patients had a major TE event, an exacerbation, or died versus placebo.
Caplacizumab has the potential to reduce the acute morbidity and mortality associated with aTTP.
Summary
BackgroundAcquired thrombotic thrombocytopenic purpura (aTTP) is a life‐threatening autoimmune thrombotic microangiopathy. In spite of treatment with plasma exchange and immunosuppression, patients remain at risk for thrombotic complications, exacerbations, and death. In the phase II TITAN study, treatment with caplacizumab, an anti‐von Willebrand factor Nanobody® was shown to reduce the time to confirmed platelet count normalization and exacerbations during treatment.
ObjectiveThe clinical benefit of caplacizumab was further investigated in a post hoc analysis of the incidence of major thromboembolic events and exacerbations during the study drug treatment period and thrombotic thrombocytopenic purpura‐related death during the study.
MethodsThe Standardized Medical Dictionary for Regulatory Activities (MedDRA) Query (SMQ) for ‘embolic and thrombotic events’ was run to investigate the occurrence of major thromboembolic events and exacerbations in the safety population of the TITAN study, which consisted of 72 patients, of whom 35 received caplacizumab and 37 received placebo.
ResultsFour events (one pulmonary embolism and three aTTP exacerbations) were reported in four patients in the caplacizumab group, and 20 such events were reported in 14 patients in the placebo group (two acute myocardial infarctions, one ischemic stroke, one hemorrhagic stroke, one pulmonary embolism, one deep vein thrombosis, one venous thrombosis, and 13 aTTP exacerbations). Two of the placebo‐treated patients died from aTTP during the study.
ConclusionIn total, 11.4% of caplacizumab‐treated patients and 43.2% of placebo‐treated patients experienced one or more major thromboembolic events, experienced an exacerbation, or died. This analysis shows the potential for caplacizumab to reduce the risk of major thromboembolic morbidities and mortality associated with aTTP.
A defect in RelB, a member of the Rel/nuclear factor (NF)-κB family of transcription factors, affects antigen presenting cells and the formation of lymphoid organs, but its role in T lymphocyte differentiation is not well characterized. Here, we show that RelB deficiency in mice leads to a selective decrease of NKT cells. RelB must be expressed in an irradiation-resistant host cell that can be CD1d negative, indicating that the RelB expressing cell does not contribute directly to the positive selection of CD1d-dependent NKT cells. Like RelB-deficient mice, aly/aly mice with a mutation for the NF-κB–inducing kinase (NIK), have reduced NKT cell numbers. An analysis of NK1.1 and CD44 expression on NKT cells in the thymus of aly/aly mice reveals a late block in development. In vitro, we show that NIK is necessary for RelB activation upon triggering of surface receptors. This link between NIK and RelB was further demonstrated in vivo by analyzing RelB+/− × aly/+ compound heterozygous mice. After stimulation with α-GalCer, an antigen recognized by NKT cells, these compound heterozygotes had reduced responses compared with either RelB+/− or aly/+ mice. These data illustrate the complex interplay between hemopoietic and nonhemopoietic cell types for the development of NKT cells, and they demonstrate the unique requirement of NKT cells for a signaling pathway mediated by NIK activation of RelB in a thymic stromal cell.
Introduction: Caplacizumab is a humanized anti-von Willebrand Factor (vWF) Nanobody® for the treatment of acquired Thrombotic Thrombocytopenic Purpura (aTTP). Caplacizumab targets the A1domain of vWF, inhibiting the interaction between vWF and platelets. Clinical studies conducted in aTTP patients confirmed the rapid and sustained complete suppression of the vWF activity using an initial intravenous dose of 10 mg, and a maintenance subcutaneous 10 mg daily dosing regimen, with corresponding favorable efficacy and safety profiles. Areas covered: The pharmacokinetics of caplacizumab are non-linear, characterized by a targetmediated disposition and the exposure is dependent upon drug and target concentration over time. The pharmacokinetics of caplacizumab are predictable when considering the turnover of the circulating vWF and its modulation by the drug over time. Renal and hepatic impairment are not expected to influence the exposure to the drug, and no direct or indirect drug-drug pharmacokinetic interactions are anticipated based on the mechanism of action and the specificity of the pharmacodynamic effect of caplacizumab. Expert opinion: Caplacizumab prevents the interaction between vWF and platelets, offering a direct and rapid therapeutic intervention to stop microthrombosis. The combination of caplacizumab with plasma exchange and immunosuppression represents an important, potentially life-saving advance in the treatment of aTTP patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.