The designing, collecting, analyzing, and reporting of psychological studies entail many choices that are often arbitrary. The opportunistic use of these so-called researcher degrees of freedom aimed at obtaining statistically significant results is problematic because it enhances the chances of false positive results and may inflate effect size estimates. In this review article, we present an extensive list of 34 degrees of freedom that researchers have in formulating hypotheses, and in designing, running, analyzing, and reporting of psychological research. The list can be used in research methods education, and as a checklist to assess the quality of preregistrations and to determine the potential for bias due to (arbitrary) choices in unregistered studies.
The designing, collecting, analyzing, and reporting of psychological studies entail many choices that are often arbitrary. The opportunistic use of these so-called researcher degrees of freedom aimed at obtaining statistically significant results is problematic because it enhances the chances of false positive results and may inflate effect size estimates. In this review article, we present an extensive list of 34 degrees of freedom that researchers have in formulating hypotheses, and in designing, running, analyzing, and reporting of psychological research. The list can be used in research methods education, and as a checklist to assess the quality of preregistrations and to determine the potential for bias due to (arbitrary) choices in unregistered studies.
The effect of publication bias on the assessment of heterogeneity. Psychological Methods.Feedback, suggestion, comments and remarks are more than welcome. They can be send to h.e.
In this meta-study, we analyzed 2442 effect sizes from 131 meta-analyses in intelligence research, published from 1984 to 2014, to estimate the average effect size, median power, and evidence for bias. We found that the average effect size in intelligence research was a Pearson’s correlation of 0.26, and the median sample size was 60. Furthermore, across primary studies, we found a median power of 11.9% to detect a small effect, 54.5% to detect a medium effect, and 93.9% to detect a large effect. We documented differences in average effect size and median estimated power between different types of intelligence studies (correlational studies, studies of group differences, experiments, toxicology, and behavior genetics). On average, across all meta-analyses (but not in every meta-analysis), we found evidence for small-study effects, potentially indicating publication bias and overestimated effects. We found no differences in small-study effects between different study types. We also found no convincing evidence for the decline effect, US effect, or citation bias across meta-analyses. We concluded that intelligence research does show signs of low power and publication bias, but that these problems seem less severe than in many other scientific fields.
One of the main goals of meta-analysis is to test and estimate the heterogeneity of effect size. We examined the effect of publication bias on the Q-test and assessments of heterogeneity, as a function of true heterogeneity, publication bias, true effect size, number of studies, and variation of sample sizes. The expected values of heterogeneity measures H2 and I2 were analytically derived, and the power and the type I error rate of the Q-test were examined in a Monte-Carlo simulation study. Our results show that the effect of publication bias on the Q-test and assessment of heterogeneity is large, complex, and non-linear. Publication bias can both dramatically decrease and increase heterogeneity. Extreme homogeneity can occur even when the population heterogeneity is large. Particularly if the number of studies is large and population effect size is small, publication bias can cause both extreme type I error rates and power of the Q-test close to 0 or 1. We therefore conclude that the Q-test of homogeneity and heterogeneity measures H2 and I2 are generally not valid in assessing and testing heterogeneity when publication bias is present, especially when the true effect size is small and the number of studies is large. We introduce a web application, Q-sense, which can be used to assess the sensitivity of the Q-test to publication bias, and we apply it to two published meta-analysis. Meta-analytic methods should be enhanced in order to be able to deal with publication bias in their assessment and tests of heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.