This study aimed to evaluate the shelf-life of mechanically filleted well-fed Atlantic mackerel during frozen storage at -25 °C and effect of treatment with antioxidants (sodium erythorbate and a polyphosphate mixture) and different antioxidant application methods (dipping, spraying and glazing).Both physicochemical measurements and sensory analysis were applied. Antioxidant treatments prolonged shelf-life of mackerel. Sensory analysis indicated that untreated fillets had a shelf-life of less than 2.5 months, while all antioxidant treated fillets exceeded that. The most effective treatment, dipping fillets into a sodium erythorbate solution, yielding a shelf-life of 15 months. Physicochemical methods used to evaluate degradation of lipids in the fillets were free fatty acids (FFA), lipid hydroperoxides (PV) and thiobarbituric acid reactive substances (TBARS). They did not correlate with sensory results and might therefore be a questionable choice for evaluation of oxidation and development of rancid flavour and odour in complex matrixes such as Atlantic mackerel.
Ascophyllum nodosum contains many valuable compounds, including polyphenols, peptides, and carotenoids that have been shown to exhibit biological activities. These compounds are not a priority ingredient in seaweed meal products for the current users. Hence, the aim of the study was to investigate the chemical and bioactive characteristics of A. nodosum as affected by seasonal variation and evaluate the potential benefits of alternative processing and the utilization of side streams for product development. The analysis of raw materials, press liquid, and press cake from alternative processing and the commercial seaweed meal at different harvesting periods indicated that the chemical composition is linked to the reproductive state of the algae. Phenolic content and ORAC activity increased following the seaweed’s fertile period, making alternative processing more promising in July and October compared to June. Several valuable ingredients were obtained in the press liquid, including polyphenols, which can be used in the development of new high-value bioactive products. The suggested alternative processing does not have a negative effect on the composition and quality of the current seaweed meal products. Hence, the extraction of valuable ingredients from the fresh biomass during the processing of seaweed meal could be a feasible option to increase the value and sustainability of seaweed processing.
This study investigated the efficacy of three commercially relevant packaging methods (vacuum with water glazing VAC-G; vacuum with seawater VAC-S; shatter-layer packaging SL) to improve frozen storage stability of mechanically filleted Atlantic mackerel at − 25 °C, in comparison to water glazing alone (GL) and storage as whole unglazed, block frozen fish. Besides proximate composition and pH of raw material, quality changes were analysed by free fatty acid content (FFA), water holding capacity (WHC), cooking yield, lipid oxidation (lipid hydroperoxides, PV; non-protein bound thiobarbituric acid reactive substances, TBARS) and sensory profiles of cooked samples after 3.5, 8, 10 and 12 months of frozen storage. Vacuum-packaging was effective in mitigating the PV and TBARS as well as rancid odour and flavour. The inclusion of seawater in VAC-S altered the sensory textural attributes of the mackerel fillet to be more juicy, tender and soft and increased the attribute of salty flavour in the sample. SL delayed rancid odour and flavour by 2 months compared to GL. Processing of mackerel under industrial conditions, including filleting, handling, double-freezing and glazing accelerated the formation of FFA as well as losses of WHC and cooking yield in the fillet regardless the packaging methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.