Current literature lacks structured methodologies for analyzing medical technologies’ impact from the patient-centered care perspective. This study introduces, applies and validates ‘Patient-Centered Care Impact Analysis’ (PCIA) as a method for identifying patient-centered care associated demands and expectations for a particular technology and assessing its compliance with these demands. PCIA involves five stages: (1) demand identification, (2) ranking demands’ impact magnitude, (3) scoring demand compliance (DC), (4) demand priority (DP) assignment based on impact magnitude and compliance, (5) generating a summative impact priority number (IPN). PCIA was performed as a comparative assessment of two central nervous system (CNS) drug-delivery platforms; SipNose, a novel noninvasive Direct-Nose-to-Brain (DNTB), vs. the standard-of-care invasive intrathecal/intracerebroventricular injection (Invasive I/I). Study participants included a ranking team (RT) without experience with the SipNose technology that based their scoring on experimental data; and a validation team (VT) experienced with the SipNose platform. All had experience with, or knowledge of, InvasiveI/I. Demand identification and impact magnitude were performed by one content and one assessment expert. Each participant assessed each technology’s DC. DP scores, IPN’s and IPN DNTB:InvasiveI/I ratios were generated for each technology, for each team, based on DC and summative DP scores, respectively. Both teams assigned DNTB higher DC scores, resulting in higher DNTB DP, IPN scores and DNTB:InvasiveI/I IPN ratios. Lack of difference between team assessments of DP and IPN ratio validate PCIA as an assessment tool capable of predicting patient-centered clinical care quality for a new technology. The significant differences between the platforms highlight SipNose’s patient-care centered advantages as an effective CNS drug-delivery platform.
BackgroundSUMOylation involves the attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on thousands of substrates with target-specific effects on protein function. Sentrin-specific proteases (SENPs) are proteins involved in the maturation and deconjugation of SUMO. Specifically, SENP7 is responsible for processing polySUMO chains on targeted substrates including the heterochromatin protein 1α (HP1α).MethodsWe performed exome sequencing and segregation studies in a family with several infants presenting with an unidentified syndrome. RNA and protein expression studies were performed in fibroblasts available from one subject.ResultsWe identified a kindred with four affected subjects presenting with a spectrum of findings including congenital arthrogryposis, no achievement of developmental milestones, early respiratory failure, neutropenia and recurrent infections. All died within four months after birth. Exome sequencing identified a homozygous stop gain variant inSENP7c.1474C>T; p.(Gln492*) as the probable aetiology. The proband’s fibroblasts demonstrated decreased mRNA expression. Protein expression studies showed significant protein dysregulation in total cell lysates and in the chromatin fraction. We found that HP1α levels as well as different histones and H3K9me3 were reduced in patient fibroblasts. These results support previous studies showing interaction between SENP7 and HP1α, and suggest loss of SENP7 leads to reduced heterochromatin condensation and subsequent aberrant gene expression.ConclusionOur results suggest a critical role for SENP7 in nervous system development, haematopoiesis and immune function in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.