A recurring challenge for brain pathologists is to diagnose whether a brain malignancy is a primary tumor or a metastasis from some other tissue. The accurate diagnosis of brain malignancies is essential for selection of proper treatment. MicroRNAs are a class of small non-coding RNA species that regulate gene expression; many exhibit tissue-specific expression and are misregulated in cancer. Using microRNA expression profiling, we found that hsa-miR-92b and hsa-miR-9/hsa-miR-9* are over-expressed, specifically in brain primary tumors, as compared to primary tumors from other tissues and their metastases to the brain. By considering the expression of only these two microRNAs, it is possible to distinguish between primary and metastatic brain tumors with very high accuracy. These microRNAs thus represent excellent biomarkers for brain primary tumors. Previous reports have found that hsa-miR-92b and hsa-miR-9/hsa-miR-9* are expressed more strongly in developing neurons and brain than in adult brain. Thus, their specific over-expression in brain primary tumors supports a functional role for these microRNAs or a link between neuronal stem cells and brain tumorigenesis.
Skin carcinogenesis is known to be a multi-step process with several stages along its malignant evolution. We hypothesized that transformation of normal epidermis to cutaneous squamous cell carcinoma (cSCC) is causally linked to alterations in microRNAs (miRNA) expression. For this end we decided to evaluate their alterations in the pathologic states ending in cSCC. Total RNA was extracted from formalin fixed paraffin embedded biopsies of five stages along the malignant evolution of keratinocytes towards cSCC: Normal epidermis, solar elastosis, actinic keratosis KIN1-2, advanced actinic keratosis KIN3 and well-differentiated cSCC. Next-generation small RNA sequencing was performed. We found that 18 miRNAs are overexpressed and 28 miRNAs are underexpressed in cSCC compared to normal epidermis. miR-424, miR-320, miR-222 and miR-15a showed the highest fold change among the overexpressed miRNAs. And miR-100, miR-101 and miR-497 showed the highest fold change among the underexpressed miRNAs. Heat map of hierarchical clustering analysis of significantly changed miRNAs and principle component analysis disclosed that the most prominent change in miRNAs expression occurred in the switch from 'early' stages; normal epidermis, solar elastosis and early actinic keratosis to the 'late' stages of epidermal carcinogenesis; late actinic keratosis and cSCC. We found several miRNAs with 'stage specific' alterations while others display a clear 'gradual', either progressive increase or decrease in expression along the malignant evolution of keratinocytes. The observed alterations focused in miRNAs involved in the regulation of AKT/mTOR or in those involved in epithelial to mesenchymal transition. We chose to concentrate on the evaluation of the molecular role of miR-497. We found that it induces reversion of epithelial to mesenchymal transition. We proved that SERPINE-1 is its biochemical target. The present study allows us to further study the pathways that are regulated by miRNAs along the malignant evolution of keratinocytes towards cSCC.
The elderly immune system is characterized by reduced responses to infections and vaccines, and an increase in the incidence of autoimmune diseases and cancer. Age-related deficits in the immune system may be caused by peripheral homeostatic pressures that limit bone marrow B-cell production or migration to the peripheral lymphoid tissues. Studies of peripheral blood B-cell receptor spectratypes have shown that those of the elderly are characterized by reduced diversity, which is correlated with poor health status. In the present study, we performed for the first time high-throughput sequencing of immunoglobulin genes from archived biopsy samples of primary and secondary lymphoid tissues in old (74 ± 7 years old, range 61-89) versus young (24 ± 5 years old, range 18-45) individuals, analyzed repertoire diversities and compared these to results in peripheral blood. We found reduced repertoire diversity in peripheral blood and lymph node repertoires from old people, while in the old spleen samples the diversity was larger than in the young. There were no differences in somatic hypermutation characteristics between age groups. These results support the hypothesis that age-related immune frailty stems from altered B-cell homeostasis leading to narrower memory B-cell repertoires, rather than changes in somatic hypermutation mechanisms. Keywords:Aging r B cells r Bone marrow r Immunoglobulin repertoire r Secondary lymphoid tissues Additional supporting information may be found in the online version of this article at the publisher's web-site IntroductionThe age-related changes in the structure and function of the immune system are usually manifested as increased susceptibility Correspondence: Prof. Ramit Mehr e-mail: ramit.mehr@biu.ac.il to infections (both primary and secondary responses) and cancers, poor responsiveness to new or evolving pathogens, reduced efficacy of vaccination and increased incidence of autoimmune diseases [1][2][3][4][5]. This results in increased disease burdens and health- * These authors contributed equally to this work. * * These authors contributed equally to this work as senior authors.C 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu Eur. J. Immunol. 2016. 46: 480-492 Molecular immunology 481 care costs [3,6,7]. Intrinsic changes in primary and secondary lymphoid tissue function, including hematopoietic stem cells in the bone-marrow (BM), are associated with aging. Literature on immunosenescence has focused mainly on T-lineage impairments, as thymus involution is probably the most well-studied age-related immune dysfunction. In addition, there are age-related defects in the ability of CD4 + and CD8 + T cells to respond to T-cell receptor engagement, a propensity of CD4 + cells to differentiate into Th17 cells at the expense of Th1 and Th2 differentiation and an increase in regulatory T-cell numbers and function [4,8].In the B-cell lineage, changes were observed in the composition of B-cell subtypes in both BM and periphery that may result from increased B-cell longe...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.