Striatal dopamine release is key for learning and motivation and is composed of subregions including the dorsal striatum (DS), nucleus accumbens core, and the nucleus accumbens shell. Spontaneously occurring dopamine release was compared across these subregions. Dopamine release/uptake dynamics differ across striatal subregions, with dopamine transient release amplitude and release frequency greatest in male mice, and the largest signals observed in the DS. Surprisingly, female mice exhibited little regional differences in dopamine release for DS and nucleus accumbens core regions, but lower release in the nucleus accumbens shell. Blocking voltage‐gated K+ channel (Kv channels) with 4‐aminopyridine enhanced dopamine detection without affecting reuptake. The 4‐aminopyridine effects were greatest in ventral regions of female mice, suggesting regional differences in Kv channel expression. The dopamine transporter blocker cocaine also enhanced detection across subregions in both sexes, with greater overall increased release in females than males. Thus, sex differences in dopamine transmission are apparent and likely include differences in the Kv channel and dopamine transporter function. The lack of regional differences in dopamine release observed in females indicates differential regulation of spontaneous and evoked dopamine release.
Previous studies indicate that moderate-to-high ethanol (EtOH) concentrations enhance dopamine (DA) neurotransmission in the mesolimbic DA system from the ventral tegmental area (VTA) and projecting to the nucleus accumbens core (NAc).However, voltammetry studies demonstrate that moderate-to-high EtOH concentrations decrease evoked DA release at NAc terminals. The involvement of γ-aminobutyric acid (GABA) receptors (GABA A Rs), glycine (GLY) receptors (GLYRs) and cholinergic interneurons (CINs) in mediating EtOH inhibition of evoked NAc DA release were examined. Fast scan cyclic voltammetry, electrophysiology, optogenetics and immunohistochemistry techniques were used to evaluate the effects of acute and chronic EtOH exposure on DA release and CIN activity in C57/BL6, CD-1, transgenic mice and δ-subunit knockout (KO) mice (δÀ/À). Ethanol decreased DA release in mice with an IC 50 of 80 mM ex vivo and 2.0 g/kg in vivo.GABA and GLY decreased evoked DA release at 1-10 mM. Typical GABA A R agonists inhibited DA release at high concentrations. Typical GABA A R antagonists had minimal effects on EtOH inhibition of evoked DA release. However, EtOH inhibition of DA release was blocked by the α 4 β 3 δ GABA A R antagonist Ro15-4513, the GLYR antagonist strychnine and by the GABA ρ 1 (Rho-1) antagonist TPMPA (10 μM) and reduced significantly in GABA A R δÀ/À mice. Rho-1 expression was observed in CINs. Ethanol inhibited GABAergic synaptic input to CINs from the VTA and enhanced firing rate, both of which were blocked by TPMPA. Results herein suggest that EtOH inhibition of DA release in the NAc is modulated by GLYRs and atypical GABA A Rs on CINs containing δand Rho-subunits.
Opioid use and withdrawal evokes behavioral adaptations such as drug seeking and anxiety, though the underlying neurocircuitry changes are unknown. The basolateral amygdala (BLA) regulates these behaviors through principal neuron activation. Excitatory BLA pyramidal neuron activity is controlled by feedforward inhibition provided, in part, by lateral paracapsular (LPC) GABAergic inhibitory neurons, residing along the BLA/external capsule border. LPC neurons express µ-opioid receptors (MORs) and are potential targets of opioids in the etiology of opioid-use disorders and anxiety-like behaviors. Here, we investigated the effects of opioid exposure on LPC neuron activity using immunohistochemical and electrophysiological approaches. We show that LPC neurons, and other nearby BLA GABA and non-GABA neurons, express MORs and δ-opioid receptors. Additionally, DAMGO, a selective MOR agonist, reduced GABA but not glutamate-mediated spontaneous postsynaptic currents in LPC neurons. Furthermore, in LPC neurons, abstinence from repeated morphine-exposure in vivo (10 mg/kg/day, 5 days, 2 days off) decrease the intrinsic membrane excitability, with a ~75% increase in afterhyperpolarization and ~40–50% enhanced adenylyl cyclase-dependent activity in LPC neurons. These data show that MORs in the BLA are a highly sensitive targets for opioid-induced inhibition and that repeated opioid exposure results in impaired LPC neuron excitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.