Objective Agricultural workers worldwide exposed to heat stress could be at the risk of kidney injury, which could lead to chronic kidney disease of an unknown origin (CKDu). Hydration has been promoted as a key measure to reduce kidney injury. In the presence of a hydration intervention, the incidence of acute kidney injury (AKI) was calculated in a sugarcane worker population in Guatemala and several risk factors were evaluated. Methods We measured kidney function at the beginning and end of the work shift at three time points in 517 sugarcane workers. We defined AKI as an increase in serum creatinine of 26.5 µmol/L or 50% or more from the pre-shift value. Associations between AKI and risk factors were examined, including interactions with hydration status. Results The prevalence of dehydration post-shift (> 1.020 specific gravity) was 11% in February, 9% in March, and 6% in April. Cumulative incidence of AKI was 53% in February, 54% in March, and 51% in April. AKI was associated with increasing post-shift specific gravity, a dehydration marker, (OR 1.24, 95% CI 1.02-1.52) and with lower electrolyte solution intake (OR 0.94, 95% CI 0.89-0.99). Conclusions Dehydration and insufficient electrolyte consumption are risk factors for AKI. However even well-hydrated sugarcane workers routinely experience AKI. While hydration is important and protective, there is a need to understand other contributors to risk of AKI and identify prevention strategies with these workers.
Cardiovascular drift—a progressive increase in heart rate (HR) and decrease in stroke volume (SV) during prolonged exercise—is exacerbated by heat stress and thermal strain, and often accompanied by a decrease in work capacity (indexed as maximal oxygen uptake [V.O2max]). To attenuate physiological strain during work in the heat, use of work:rest ratios is recommended by the National Institute for Occupational Safety and Health. The purpose of this study was to test the hypothesis that during moderate work in hot conditions, utilizing the recommended 45:15 min work:rest ratio would result in cardiovascular drift ‘accumulating’ over consecutive work:rest cycles and accompanying decrements in V.O2max. Eight people (5 women; (mean ± SD) age = 25 ± 5 y; body mass = 74.8 ± 11.6 kg; V.O2max = 42.9 ± 5.6 mL·kg−1·min−1) performed 120 min of simulated moderate work (201–300 kcal·h−1) in hot conditions (indoor wet-bulb globe temperature = 29.0 ± 0.6 °C). Participants completed two 45:15 min work:rest cycles. Cardiovascular drift was evaluated at 15 and 45 min of each work bout; V.O2max was measured after 120 min. On a separate day, V.O2max was measured after 15 min under identical conditions for comparison before and after cardiovascular drift occurred. HR increased 16.7% (18 ± 9 beats·min−1, p = 0.004) and SV decreased 16.9% (−12.3 ± 5.9 mL, p = 0.003) between 15 and 105 min, but V.O2max was unaffected after 120 min (p = 0.14). Core body temperature increased 0.5 ± 0.2 °C (p = 0.006) over 2 h. Recommended work:rest ratios preserved work capacity but did not prevent the accumulation of cardiovascular and thermal strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.