Despite modest improvements in survival in recent years, pancreatic adenocarcinoma remains a deadly disease with a 5-year survival rate of only 9%. These poor outcomes are driven by failure of early detection, treatment resistance, and propensity for early metastatic spread. Uncovering innovative therapeutic modalities to target the resistance mechanisms that make pancreatic cancer largely incurable are urgently needed. In this review, we discuss the immune composition of pancreatic tumors, including the counterintuitive fact that there is a significant inflammatory immune infiltrate in pancreatic cancer yet anti-tumor mechanisms are subverted and immune behaviors are suppressed. Here, we emphasize how immune cell interactions generate tumor progression and treatment resistance. We narrow in on tumor macrophage (TAM) spatial arrangement, polarity/function, recruitment, and origin to introduce a concept where interactions with tumor neutrophils (TAN) perpetuate the microenvironment. The sequelae of macrophage and neutrophil activities contributes to tumor remodeling, fibrosis, hypoxia, and progression. We also discuss immune mechanisms driving resistance to standard of care modalities. Finally, we describe a cadre of treatment targets, including those intended to overcome TAM and TAN recruitment and function, to circumvent barriers presented by immune infiltration in pancreatic adenocarcinoma.
We report the successful encapsulation and elution of recombinant murine IL-12 (rmIL-12) from poly(lactide-co-glycolic) acid (PLGA) nanospheres (IL-12-NS) synthesized using the double emulsion/solvent evaporation (DESE) technique with microsphere depletion through ultracentrifugation. Images obtained with scanning electron microscopy (SEM) showcased a characteristic spherical shape with a mean particle diameter of 138.1 ± 10.8 nm and zeta potential of − 15.1 ± 1.249 mV . These values suggest minimal flocculation when in solution, which was reflected in an in vivo biodistribution study that reported no observed morbidity/mortality. Encapsulation efficiency (EE) was determined to be 0.101 ± 0.009 % with average particle concentration obtained per batch of 1.66 × 10 9 ± 4.45 × 10 8 particles/mL. Disparate zeta (ζ) potentials obtained from both protein-loaded and protein-unloaded batches suggested surface adsorption of protein, and confocal microscopy of BSA-FITC-loaded nanospheres confirmed the presence of protein within the polymeric shell. Furthermore, elution of rmIL-12 from IL-12-NS at a concentration of 500 million particles/mL was characterized using enzyme-linked immunosorbent assay (ELISA). When IL-12-NS was administered in vivo to female BALB/c mice through retroorbital injection, IL-12-NS produced a favorable systemic cytokine profile for tumoricidal activity within the peripheral blood. Whereas IFN-γ nadir occurred at 72 hours, levels recovered quickly and displayed positive correlations postburst out to 25 days postinjection. IL-12-NS administration induced proinflammatory changes while prompting minimal counterregulatory increases in anti-inflammatory IL-10 and IL-4 cytokine levels. Further, while IL-6 levels increased to 30 folds of the baseline during the burst phase, they normalized by 72 hours and trended negatively throughout the sill phase. Similar trends were observed with IL-1β and CXCL-1, suggesting a decreased likelihood of progression to a systemic inflammatory response syndrome-like state. As IL-12-NS delivers logarithmically lower amounts of IL-12 than previously administered during human clinical trials, our data reflect the importance of IL-12-NS which safely create a systemic immunostimulatory environment.
Clinical trials exploring bolus intravenous delivery of interleukin‐12 (IL‐12) for treatment of solid tumors ultimately failed due to lack of clinical response and severe dose‐limiting toxicities. The present study was conducted to evaluate whether recombinant murine IL‐12 (rmIL‐12) could be successfully encapsulated within Poly (D, l‐lactide‐co‐glycolide) (PLGA) nanospheres (rmIL‐12ns) for safe and effective systemic delivery at pharmacologic scale. Optimal fabrication of rmIL‐12ns occurs with dichloromethane as the organic solvent and emulsion formation via ultrasonication at 50% power (250 W sonicator) for 10 s (50W10s). We then determined whether utilization of synthesis modifiers including fetal bovine serum (FBS), magnesium hydroxide [Mg(OH)2], trehalose, or the surfactants polysorbate 80 and Span 60 alone or in combination could increase the encapsulation efficiency (EE) and/or modify the burst elution profile characteristic of the 50W10s rmIL‐12ns formulation. The greatest EEs compared to the unmodified formulation were measured with modifications containing the surfactants polysorbate 80 and Span 60 (surfactant: 28.3 ± 6.10%, p = 0.29 and Surf/FBS: 85.4 ± 2.19%, p = 0.039). The Surf/FBS formulation was further modified for in vivo murine injection by substituting FBS with mouse serum albumin (MSA). The resulting Surf/MSA rmIL‐12ns were then characterized before delivery at three doses (0.1, 1, and 10 mg rmIL‐12ns) in our established murine model of metastatic osteosarcoma to assess efficacy. Preliminary results suggested no evidence of disease with delivery of the 0.1 mg dose in 75% of mice (3 of 4) versus a nontreated historical control (2 of 34).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.