Warfarin is a widely prescribed anticoagulant used for prophylaxis and treatment of venous and arterial thrombosis. Although warfarin is considered very efficacious, it has substantial risks associated with its use, specifically the risk of hemorrhage. Genetic variants associated with the metabolism of (S)-warfarin by cytochrome P450 2C9 may have specific implications on untoward effects. Twelve CYP2C9 allelic variants have been identified, of which CYP2C9*3 and CYP2C9*2 are the most clinically important. Studies have demonstrated that initial dosing of warfarin with CYP2C9*3 with a five-milligram dose caused an increase in the international normalized ratio and significant risk of bleeding. Studies conducted with CYP2C9*2, on the other hand are conflicting. Some data suggest that the CYP2C9*2 variant is associated with an increased propensity for bleeding whereas other studies do not demonstrate a substantial risk of adverse events. Researchers suggest that detection of genetic variants in susceptible individuals will not only decrease the risks associated with warfarin therapy but also decrease costs of adverse events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.