A thorough and detailed investigation of an unsteady free convection boundary layer flow of an incompressible electrically conducting Williamson fluid over a stretching sheet saturated with a porous medium has been numerically carried out. The partial governing equations are transferred into a system of non-linear dimensionless ordinary differential equations by employing suitable similarity transformations. The resultant equations are then numerically solved using the spectral quasi-linearization method. Numerical solutions are obtained in terms of the velocity, temperature and concentration profiles, as well as the skin friction, heat and mass transfers. These numerical results are presented graphically and in tabular forms. From the results, it is found out that the Weissenberg number, local electric parameter, the unsteadiness parameter, the magnetic, porosity and the buoyancy parameters have significant effects on the flow properties.
In this paper, a bivariate spectral quasi-linearization method is used to solve the highly non-linear two dimensional Bratu problem. The two dimensional Bratu problem is also solved using the Chebyshev spectral collocation method which uses Kronecker tensor products. The bivariate spectral quasi-linearization method and Chebyshev spectral collocation method solutions converge to the lower branch solution. The results obtained using the bivariate spectral quasi-linearization method were compared with results from finite differences method, the weighted residual method and the homotopy analysis method in literature. Tables and graphs generated to present the results obtained show a close agreement with known results from literature.
This work reports the Carreau–Yasuda nanofluid flow over a non-linearly stretching sheet viscous dissipation and chemical reaction effects. The coupled system of non-linear partial differential equations are changed into a system of linear differential equations employing similarity equations. The spectral quasi-linearization method was used to solve the linear differential equations numerically. Error norms were used to authenticate the accuracy and convergence of the numerical method. The effects of some thermophysical parameters of interest in this current study on the non-dimensional fluid velocity, concentration and temperature, the skin friction, local Nusselt and Sherwood numbers are presented graphically. Tables were used to depict the effects of selected parameters on the skin friction and the Nusselt number.
A theoretical analysis has been carried out to investigate the influence of unsteadiness on the laminar two-phase magnetohydrodynamic nanofluid flow filled with porous medium under the combined effects of Brownian motion and thermophoresis. Thermal variable conductivity, thermal radiation and viscous dissipation effects are also considered in this numerical study. The highly nonlinear partial differential equations are transformed into a set of coupled nonlinear ordinary differential equations through suitable similarity transformations. The resultant ordinary differential equations are then numerically solved using the spectral quasilinearization method. The effects of the pertinent physical parameters over the fluid velocity, temperature, concentration, skin friction, Nusselt and Sherwood numbers for both Blasius and Sakiadis flows are presented in graphical and tabular forms and discussed. It is found that the two types of flows behave differently when the physical parameters are varied.
The major objective of this current investigation is to examine the unsteady flow of a thermomagnetic reactive Maxwell nanofluid flow over a stretching/shrinking sheet with Ohmic dissipation and Brownian motion. Suitable similarity transformations were used to reduce the governing non-linear partial differential equations of momentum, energy and species conservation into a set of coupled ordinary differential equations. The reduced similarity ordinary differential equations were solved numerically using the Spectral Quasi-Linearization Method. The influence of some pertinent physical parameters on the velocity, temperature and concentration distributions was studied and analysed graphically. Further investigations were made on the impact of the Eckert number, Prandtl number, Schmidt number, thermal radiation parameter, Brownian motion parameter, thermophoresis parameter and chemical reaction parameter on the skin friction coefficient, surface heat and mass transfer rates. The results were displayed in a tabular form. Obtained results reveal that the Maxwell parameter and the unsteadiness parameter reduce the Maxwell nanofluid velocity and the fluid temperature is increased with an increase in the Eckert number and thermal radiation parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.